Monsoon depression amplification by moist barotropic instability in a vertically sheared environment

Abstract

This study makes the case that monsoon depressions over South Asia can form from a variant of moist barotropic instability. Using an idealized numerical framework in which the atmosphere is partitioned into a basic state and a perturbation, we simulate vortices resembling monsoon depressions that draw energy from the meridional shear of the monsoon trough and amplify when they interact with precipitating ascent. The influence of the basic vertical shear on the vortex induces upward velocity which couples precipitation with a Rossby wave-like mode arising from dry barotropic growth, allowing the vortex to intensify. Sensitivity experiments reveal that both the sheared basic state and latent heating are necessary to achieve positive growth rates and that this process requires a sufficiently large initial perturbation. Trajectory analyses suggest that the combined flow of the vortex and the large-scale monsoon transport diabatically generated potential vorticity from southwest of the vortex into the vortex center, thus enabling growth. In contrast with tropical cyclones, this mechanism does not require a feedback between surface wind speed and surface heat and moisture fluxes, though their presence does ultimately result in a slightly stronger vortex.

Journal:
Quarterly Journal of the Royal Meteorological Society