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Abstract Cyclonic low‐pressure systems (LPS) produce abundant rainfall in South Asia, where they are
traditionally categorized as monsoon lows, monsoon depressions, and more intense cyclonic storms. The
IndiaMeteorological Department (IMD) has trackedmonsoon depressions for over a century, finding a large
decline in their number in recent decades, but their methods have changed over time and do not include
monsoon lows. This study presents a fast, objective algorithm for identifying monsoon LPS and uses it to
assess interannual variability and trends in reanalyses. Variables and thresholds used in the algorithm are
selected to best match a subjectively analyzed LPS data set while minimizing disagreement between four
reanalyses in a training period. The stream function of 850 hPa horizontal wind is found to be optimal in this
sense; it is less noisy than vorticity and represents the complete nondivergent wind, even when flow is not
geostrophic. Using this algorithm, LPS statistics are computed for five reanalyses, and none show a
detectable trend in monsoon depression counts since 1979. Both the Japanese 55‐year Reanalysis (JRA‐55)
and the IMD data set show a step‐like reduction in depression counts when they began using geostationary
satellite data, in 1979 and 1982, respectively; the 1958–2018 linear trend in JRA‐55, however, is smaller than
in the IMD data set, and its error bar includes 0. There are more LPS in seasons with above‐average monsoon
rainfall and in La Niña years, but few other large‐scale modes of interannual variability are found to
modulate LPS counts, lifetimes, or track length consistently across reanalyses.

1. Introduction

Cyclonic low‐pressure systems (LPS) are the dominant synoptic‐scale phenomena that bring rain to India
and surrounding regions during the boreal summer monsoon season. With outer diameters near 2,000
km, these monsoon LPS typically form over the northern Bay of Bengal then propagate to the northwest over
India during the subsequent several days (Godbole, 1977; Mooley, 1973; Sikka, 1978). Although these storms
have weak surface winds of order 10 m s−1, they produce abundant rainfall, with precipitation rates peaking
at 3–5 cm day−1 in composite means and some storms producing 10–50 cm of rain along their tracks (Boos
et al., 2015; Hunt et al., 2016; Sanders, 1984; Sikka, 2006). Monsoon LPS make a large contribution to the
total summer monsoon rainfall of continental South Asia (Yoon & Chen, 2005) and have produced cata-
strophic floods there (Houze Jr et al., 2011).

Given the importance of monsoon LPS, there is great interest in studying the variability of these storms. The
India Meteorological Department (IMD) has kept records on LPS since the late nineteenth century (India
Meteorological Department, 2011). They traditionally categorized these storms by intensity, with the weak-
est systems called monsoon lows (surface wind speeds less than 8.5 m s−1 and mean sea level pressure
(MSLP) at least 2 hPa lower than surrounding regions), stronger systems called monsoon depressions (wind
speeds 8.5–13.5 m s−1 andMSLP anomalies 4–8 hPa), and even stronger vortices called deep depressions and
cyclonic storms. The use of surface wind speed or surface pressure as a metric for categorization has varied
over time (India Meteorological Department, 2011). The historical IMD data set includes only depressions
and stronger storms, but Mooley and Shukla (1987) and Sikka (2006) produced a separate data set of both
lows and depressions by manually identifying LPS from hand‐analyzed daily weather charts of the IMD.
These data sets have been used in numerous studies of variations in the number of monsoon LPS. For
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example, the number of LPS forming each summer has been shown to be modulated by the El Niño–
Southern Oscillation (ENSO) (Hunt et al., 2016), the Pacific Decadal Oscillation (PDO) (Vishnu et al.,
2018), and the Indian Ocean Dipole (IOD) (Krishnan et al., 2011), all of which are also associated with inter-
annual variations in the strength of the mean Indian summer monsoon.

Based on the two track data sets just discussed, numerous studies have reported a large decrease in the num-
ber of monsoon depressions forming each summer in recent decades, together with an increase in the num-
ber of monsoon lows (Prajeesh et al., 2013; Rajendra Kumar & Dash, 2001; Vishnu et al., 2016, and
references therein). When characterized as a linear trend, the decrease in depression counts amounts to a
reduction of around one per decade, from a midtwentieth century value of about 7, although much of the
decrease occurred as a step‐wise reduction in the early 1980s (Vishnu et al., 2016). The years 2002, 2010,
and 2012 contained the first summers, in over a century of record keeping by IMD, with nomonsoon depres-
sions. The reduction in depression counts has been argued to be associated with a decrease in total summer
rainfall in east central India, the region of highest LPS track density (Vishnu et al., 2016). A decrease in over-
all LPS activity, including that of both lows and depressions, has been projected for the coming century as
global mean temperature increases and the large‐scale, seasonal mean monsoon circulation weakens
(Rastogi et al., 2018; Sandeep et al., 2018). This projected decrease is accompanied by a poleward shift in
the region of LPS genesis in next‐century simulations using one global climate model (Sandeep et al.,
2018), but the connection of such greenhouse gas‐forced changes to past trends remains unclear, especially
given the possible dominance of aerosol forcings in historical trends of meanmonsoon strength (Bollasina &
Nigam, 2009; Ramanathan et al., 2005).

The existence of a large trend in monsoon depression counts was questioned by Cohen and Boos (2014), who
showed that no such trend could be detected in two reanalyses when automated algorithms were used to
track and classify low‐level vorticity and MSLP anomalies. Furthermore, Cohen and Boos (2014) found
depression‐strength LPS in those reanalyses during the years when IMD recorded none (2002, 2010, and
2012) and showed that satellite scatterometer data validated the intensity of the peak surface wind speeds
near the centers of those particular storms. They also showed that there was no detectable trend in a satellite
scatterometer record of synoptic‐scale wind events over the Bay of Bengal, although that record extended
back to only 1987. All of these raise numerous questions: Are the two reanalyses examined by Cohen and
Boos (2014) reliable tools for assessing trends in monsoon LPS, especially given that they extended back
to only 1979, a few years before the step‐wise reduction in IMD's depression counts? Should we expect trends
inferred from the IMD record of depression counts to be unbiased, given the large changes since the late
nineteenth century in the observing network, in methods used by IMD for identifying and classifying LPS,
and possibly in practices used for creating the hand‐drawn IMD weather charts?

All of this would seem to call for a reanalysis of monsoon LPS track data sets, analogous to the large inter-
national efforts to improve track data sets of past tropical cyclones (Delgado et al., 2018; Hagen et al., 2012;
Landsea et al., 2008, 2014). This would be a massive undertaking, made more difficult by the fact that IMD
synoptic charts are not readily available and by the fact that monsoon LPS have weak circulations compared
to tropical cyclones. Furthermore, the wind maxima of LPS are typically elevated a few kilometers above the
surface (Godbole, 1977), rendering their identification and categorization using maps of MSLP even more
difficult. Here we take an alternate approach by devising an algorithm that can identify LPS using elevated
winds as well as surface conditions as represented in five atmospheric reanalyses, including the most mod-
ern ones that represent climate forcings and that extend back in time to the 1950s. This does not eliminate
bias that might be introduced by the temporal evolution of the observing network on which those reanalyses
are based, and, indeed, we demonstrate that step‐wise changes in depression counts coincide with dates on
which geostationary satellite imagery began to be incorporated into the atmospheric state estimates.

This study builds on previous attempts to compile LPS track data sets from reanalyses (Hurley & Boos, 2015;
Praveen et al., 2015) but with greater attention paid to the optimality of the tracking algorithm, to uncer-
tainty characterization, to separation of the data sets used for training and validation of the algorithm,
and to application of the algorithm to a larger number of reanalyses and to more modern reanalyses. Past
efforts to track LPS in atmospheric reanalyses used the TRACK algorithm (Hodges, 1995, 1998; Hurley &
Boos, 2015), which runs serially and requires degrading the underlying data set to T42 spectral resolution
(Manganello et al., 2019; Thorncroft & Hodges, 2001); both of those characteristics become problematic
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when working with modern atmospheric state estimates which often have horizontal grid spacings of 20–30
km. The algorithm we create for LPS identification builds on the TempestExtremes software (Ullrich &
Zarzycki, 2017) and is thus fast, objective, and appropriate for high‐resolution and variable grids. We hope
to use this algorithm in future work to track monsoon LPS in large ensembles of high‐resolution output
from numerical weather prediction models and global climate models. In this study, the main focus is on
constructing the algorithm, demonstrating its fidelity compared to existing, subjectively analyzed LPS data
sets (Sikka, 2006), then examining the historical variability of LPS tracks on interannual and longer time
scales.

2. Data and Methods
2.1. Subjectively Analyzed Track Data Sets

We use two subjectively analyzed data sets of LPS tracks and intensities in the northern Indian Ocean. The
first was compiled by Sikka (2006) and Mooley and Shukla (1987) and runs from 1888–2003, for the months
of June through September. We hereafter refer to this as the Sikka archive. As mentioned in section 1, the
Sikka archive is the only subjectively analyzed track data set for South Asia that contains both lows and
depressions, and it was compiled by manually identifying minima in maps of MSLP from the IMD and then
classifying those minima by intensity. The second data set we use is the total number of depressions forming
between June and September from 1891–2019, as recorded by the IMD (https://www.rmcchennaieatlas.tn.
nic.in). We also use IMD best track data for depressions for 1982–2018.

2.2. Reanalyses

Five global atmospheric reanalyses are used for this study, with horizontal grid spacings ranging from 0.25–
1.25° and temporal resolutions ranging from hourly to 6‐hourly (Table 1). The variables used are MSLP, sur-
face wind, surface height, land‐sea fraction, and the 850 hPa horizontal wind and relative humidity. All of
the reanalyses used here assimilated both satellite and conventional (e.g., surface station and radiosonde)
observations that increased in number and type over time, with the greatest growth seen in satellite observa-
tions. For example, ERA‐Interim, produced by the European Centre for Medium‐Range Weather Forecasts
(ECMWF), assimilated more than 106 daily observations in 1989 and almost 107 per day in 2010; the great
majority of these, by count, are from satellite, but surface and radiosonde observations from land and
ship‐based stations are also included, with a reasonable count over South Asia (Dee et al., 2011).

The most recent reanalysis from ECMWF, ERA5, incorporates newly reprocessed observations and input
from more recent instruments that were not assimilated into ERA‐Interim (Hersbach & Dee, 2016;
Hersbach et al., 2019). Similarly, the Modern‐Era Retrospective Analysis for Research and Applications, ver-
sion 2 (MERRA‐2) (Gelaro et al., 2017) and the Climate Forecast System Reanalysis (CFSR) (Saha et al.,
2010) both assimilate observations not included by their predecessors, with large increases in observation
counts in recent decades. In MERRA‐2, for example, the number of assimilated aircraft observations
increased gradually by a factor of about 4 from the late 1990s to 2015, eventually becoming the dominant
source of direct measurements of upper‐level winds, while large step‐like increases in the number of assimi-
lated satellite radiances occurred in 2002, 2008, and 2013 (McCarty et al., 2016). Since we are interested in
the large changes in monsoon depression counts seen in IMD data in the late 1970s and early 1980s, we also
use the Japanese 55‐year Reanalysis (JRA‐55) (Ebita et al., 2011; Kobayashi et al., 2015) which extends back

Table 1
Details of Reanalysis Data Used in This Study

Spatial Temporal
Data set resolution resolution Period Source

ERA‐Interim 0.75° × 0.75° 6 hr 1979–2018 Dee et al. (2011)
JRA‐55 1.25° × 1.25° 6 hr 1958–2019 Ebita et al. (2011)
CFSR 0.5° × 0.5° 6 hr 1979–2010 Saha et al. (2010)
MERRA‐2 0.625° × 0.5° 3 hr 1980–2019 Gelaro et al. (2017)
ERA5 0.25° × 0.25° 1 hr 1979–2019 Hersbach et al. (2019)
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to 1958. Only conventional observations were assimilated by JRA‐55 before 1971, and the greatest increase in
the number of assimilated satellite observations occurred after 1979.

Some of the reanalyses we use include time‐varying climate forcings that may influence trends in LPS activ-
ity. For example, ERA5 incorporates the Coupled Model Intercomparison Project 5 (CMIP5) radiative for-
cing, accounting in a self‐consistent manner for changing greenhouse gases, volcanic eruptions, sea
surface temperarture (SST), and sea ice cover (Hersbach & Dee, 2016; Hersbach et al., 2019). This contrasts
with ERA‐Interim, which imposes a simple linear trend in greenhouse gas concentrations and uses a succes-
sion of different SST and sea ice data sets with some temporal discontinuities (Dee et al., 2011). CFSR incor-
porates time‐evolving greenhouse gases, aerosols, and solar variations, while JRA‐55 includes time‐varying
greenhouse gases but a two‐dimensional monthly climatology of aerosol optical depth. MERRA‐2 uses a
sophisticated assimilation of aerosol observations, together with prescribed increases in carbon dioxide.

2.3. Precipitation and SST Data

We employ several additional data sets to create indices used in assessing interannual variations of LPS
activity. Indian summer rainfall is obtained from the Indian Institute of Tropical Meteorology (IITM;
https://www.tropmet.res.in/Data%20Archival-51-Page) and is used to identify pluvial and drought summer
monsoon years. The Oceanic Niño Index (ONI) is used as an ENSO indicator and obtained from the Climate
Prediction Center (https://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php).
Monthly mean SST from the Hadley Centre Global Sea Ice and Sea Surface Temperature version 2 data set
(HadISST2)(Rayner et al., 2003) is used to compute the Indian Ocean Dipole (IOD) index; specifically, we
use a normalized index represented by the anomalous SST difference between the western (10°S to 10°N,
50–70°E) and eastern (10°S to equator, 90–110°E) Indian Ocean.

2.4. TempestExtremes

An automated Lagrangian pointwise feature tracker, TempestExtremes, is used for extracting LPS track
information from the reanalyses (Ullrich & Zarzycki, 2017). TempestExtremes has been used for tracking
features including tropical cyclones, extratropical cyclones, and tropical easterly waves (Chavas et al.,
2017; Michaelis & Lackmann, 2019; Ullrich & Zarzycki, 2017; Zarzycki, Thatcher, et al. 2017). The basic
algorithm uses the MapReduce technique, which operates in two stages: first, parallel identification of sui-
table candidates at each time step through application of thresholds and/or criteria that enforce a closed con-
tour around the candidate points; second, stitching of nearby candidates over successive time steps to

Figure 1. An illustration of LPS tracking using different search variables. The shaded region is (a, e) mean sea level
pressure in hPa, (b, f ) vorticity at 850 hPa in 10−4 s−1, (c, g) geopotential at 850 hPa in 104m2 s−2, and (d, h) stream
function at 850 hPa in 106 m2 s−1 on 26 July 2003 at 00:00 UTC, corresponding to the point of maximum strength
during the lifetime of an LPS. The LPS genesis point and track obtained using the given search variable are shown
as the magenta dot and line, respectively. The blue dot and line are the Sikka archive LPS genesis point and
track, respectively. The top panel shows results from ERA‐Interim and the bottom panel from JRA‐55.
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develop object tracks, eliminating candidates that do not exhibit behavior consistent with a transiting fea-
ture. Here, we use the specific requirement that candidate points must be within 3° of each other on succes-
sive time points to be linked. If no points exist within 3° of an existing point in the succeeding 12 hr period,
then the track is terminated. Because we use this 12 hr period, rather than the time resolution of the input
data, for joining successive points into a track, the stitching process is not expected to be highly sensitive to
the temporal resolution of the input data.

The criteria for initial identification of suitable candidates explored in this work require identifying features
that are local minima or maxima, tagging only the strongest candidate within 5° great‐circle distance and
testing for a closed contour in a specified search variable of specified magnitude and within a specified dis-
tance. The closed contour criterion is assessed via a depth‐first search of grid points away from the nodal fea-
ture, ensuring that all possible paths away from the feature reaching the prescribed distance exhibit an
increase (or decrease) in the search variable of sufficient magnitude. One minor additional modification is
made to remove LPS that may appear due to artifacts of the representation of high orography in reanalyses:
We require the maximum surface geopotential within 2° of the LPS center to be less than 8,000 m2 s−2 for at
least 24 cumulative hours of the LPS track. That is, LPS that spend nearly their entire lifetime over elevated
terrain are are not included in our data set.

Features identified using the above procedure are initially classified as LPS. Monsoon depressions, which are
strong LPS, are subsequently classified by requiring a closed contour magnitude of MSLP that is greater than
or equal to 4 hPa and a maximum surface wind speed within 3° great‐circle distance higher than 8.5 m s−1

sustained for at least 6 hr along the track, similar to the IMD classification of depressions. LPS that do not
satisfy these criteria are categorized as lows.

An LPS tracked using four different search variables is shown in Figure 1. The feature is tracked successfully
for all four variables in both ERA‐Interim and JRA‐55, despite differences in spatial resolution between these
data sets. There are differences in the track length compared to the Sikka archive. Visually, tracking per-
formed with stream function, geopotential, and MSLP matches the Sikka track well, whereas tracking per-
formed using vorticity does not, producing a disjointed track in both reanalyses. We systematically evaluate
the performance of different tracking variables in section 3.

2.5. Skill Metric

To assess the agreement between LPS tracks obtained from our training data sets (the reanalyses) and the
reference data set (the Sikka archive), an event‐matching algorithm is employed. Tracks are considered
matched between two or more data sets when their points lie within 3° great‐circle distance of each other
for at least 1 day in their lifetime. The degree of match between tracks in the training and reference data sets
is first quantified in terms of a hit ratio and false alarm ratio. The hit ratio is the fraction of matches in the
reference data set also detected in a training data set. The false alarm ratio is the fraction of features in a
training data set without a match in the reference data set.

We also use the Critical Success Index (CSI) (Di Luca et al., 2015) to assess algorithm skill. This index
accounts for both matches and nonmatches using a single skill score,

CSIðdata set; referenceÞ ¼ ⟨matches⟩
⟨matches⟩þ⟨nonmatches⟩

: (1)

Here ⟨matches⟩ is the count of matches between a training data set and the reference data set, and
⟨nonmatches⟩ is the average count of nonmatches in the training and reference data sets.

Since the reference data set (the Sikka archive) may contain errors, it is inadequate to simply choose a track-
ing algorithm that maximizes the CSI for this single reference data set. Hence, we also consider the degree to
which a track is represented similarly across all reanalyses. We create a combined CSI that weights agree-
ment between all of the reanalyses with agreement between the reanalyses and the Sikka archive,

CSIcombined ¼
CSIEJCM þ CSIES þ CSIJS þ CSICS þ CSIMS

4
2

: (2)
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Here CSIEJCM is the CSI among all four reanalyses—namely, considering ⟨matches⟩ to be the count of LPS
common in all four reanalyses and ⟨nonmatches⟩ to be the average of nonmatches among all four reana-
lyses. In the latter case, we define a nonmatch as occurring in a particular reanalysis when the LPS detected
in that reanalysis is not identified in at least one other reanalysis. The terms CSIES, CSIJS, CSICS, and CSIMS

are the four CSI values of the four individual reanalyses (ERA‐Interim, JRA‐55, CFSR, and MERRA‐2,
respectively) compared with the Sikka archive. The combined CSI is employed to rank the performance of
each tracking algorithm.

3. An Optimized Tracking Algorithm

Since monsoon lows and depressions have weaker intensities than classic tropical cyclones, it has been a
challenge to detect and classify these LPS in reanalyses. A variety of methods have been used for this task,
with relatively low levels of agreement between the resulting track data sets. For example, Hurley and
Boos (2015) and Hunt et al. (2016) both identified LPS as cyclonic extrema of lower tropospheric relative vor-
ticity having concurrent negative anomalies of MSLP relative to a 21‐day mean. Those studies used only
ERA‐Interim data. Praveen et al. (2015) identified LPS in both ERA‐Interim and MERRA with a detection
algorithm designed to mimic the manual identification of LPS performed by IMD, thus using only MSLP.
Even when mimicking the traditional detection methodology, Praveen et al. (2015) obtained only modest
correspondence with the Sikka archive: Correlation coefficients for interannual variations of monsoon
LPS counts were 0.4 and 0.5 for ERA‐Interim and MERRA, respectively, referenced to the Sikka archive.
All of the above studies chose thresholds (e.g., a 2 hPa MSLP anomaly) for their detection algorithms based
on some combination of physical understanding and traditional identification methods, with little systema-
tic assessment of those thresholds.

3.1. Candidate Variables and Thresholds

Here we assess multiple candidate variables and detection thresholds to obtain a tracking algorithm that is
more nearly optimal across multiple reanalyses. Although it is possible that every reanalysis and every par-
ticular configuration of an atmospheric model will have a unique geophysical variable and set of thresholds
that allow LPS identification to best match traditional methods (e.g., those used by IMD), retuning tracking
algorithms in this way is undesirable from the perspectives of both practicality and scientific understanding.
So we perform a sensitivity analysis using a set of candidate variables, with ranges of corresponding thresh-
olds and the skill metric defined above (the CSI).

We include MSLP and the 850 hPa relative vorticity (ζ) in this set of candidate variables because these have
previously been used for tracking monsoon LPS and, more generally, tropical cyclones (for a relevant history
see Bengtsson et al., 1982; Broccoli & Manabe, 1990, and Appendix B of Ullrich & Zarzycki, 2017).
Drawbacks exist for both of those variables, with peak values of vorticity depending on the horizontal reso-
lution of the underlying data set, and MSLP being only an indirect indicator of the circulation several kilo-
meters above the surface, where monsoon LPS typically have strongest winds. For this reason, we also
consider the 850 hPa geopotential, which provides the geostrophic circulation closer to the level of strongest
winds. Additionally, we consider the stream function (ψ) of the horizontal wind; through the relation
∇2ψ=ζ, it has an exact relation to the relative vorticity but is much smoother than that variable. The geopo-
tential and MSLP are similarly related to the vorticity only under conditions of low Rossby number, and
monsoon depressions can easily achieve Rossby numbers of 2 (Boos et al., 2015). A practical challenge exists
when computing ψ on a level of a vertical coordinate system that intersects the ground, because boundary
conditions must be imposed on that intersection when inverting the winds (or vorticity) to obtain the stream
function. Some reanalyses (e.g., ERA‐Interim) extrapolate winds beneath Earth's surface, and we choose to
replace those extrapolated values with 0 prior to inverting ζ to obtain ψ. More discussion of issues involved in
calculating the stream function is provided in Appendix A. In summary, the set of variables used to create
candidate tracking algorithms are MSLP, 850 hPa relative vorticity, 850 hPa geopotential, and 850 hPa
stream function (see also Table 2). We later test the sensitivity of the chosen geophysical variable to the
choice of vertical level.

Detection of LPS involves using TempestExtremes to locate minima of MSLP, geopotential, or stream func-
tion, or maxima of vorticity, then testing whether that extremum is surrounded by a closed contour of the
same field within a specified radius. This effectively tests the magnitude of the radial gradient, relative to
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a local extremum, in a given variable, making the algorithm insensitive to trends in the horizontal mean of
that variable. Use of the closed contour criterion reduces the sensitivity of the method to resolution and
furthermore resembles traditional methods, as discussed above. See Ullrich and Zarzycki (2017) for details
on how TempestExtremes implements the closed contour criterion. We test eight closed contour
magnitudes and two radii for identifying extrema, with the closed contour magnitudes and radius
together essentially specifying a minimum radial gradient that must exist for the extremum to be
classified as an LPS. We use radii of 5° and 10° of great circle distance, with the eight closed contour
magnitudes for each candidate variable shown in Table 2. This approach is analogous to that used by
Zarzycki and Ullrich (2017) in developing optimal criteria for identification of tropical cyclones using
TempestExtremes.

We additionally desire a criterion for distinguishing LPS from “heat lows,” which are nonprecipitating
low‐pressure systems trapped in the lower troposphere (Ramage, 1971; Rácz & Smith, 1999). Heat lows fre-
quently form over northwestern India during summer and over central India before monsoon onset there;
they fulfill all the traditional kinematic criteria for LPS discussed in section 1 but seem to be traditionally
excluded from LPS data sets by some implicit criteria that we suspect involves their geographic location or
moisture content. We initially attempted to use a precipitable water criterion to distinguish heat lows from
traditional LPS but recognized that the increase in precipitable water expected in a warming climate might
create spurious trends in LPS counts. One alternative would be to require a minimum precipitation rate to
distinguish heat lows from LPS, motivated by the fact that most interest in LPS exists because of their heavy
precipitation. But precipitation rates have large variance on short time and space scales and are also subject
to trends in a warming climate. So we opt to distinguish LPS from heat lows using the 850 hPa relative
humidity (RH), averaged within 3° of the LPS center. Eight RH thresholds ranging from 55% to 90%, with
an interval of 5%, are used in the candidate tracking algorithms. The RH is required to exceed these thresh-

olds for a cumulative period of at least 1 day over the disturbance lifetime
to be considered an LPS; otherwise it is categorized as a heat low. This
choice thus includes systems in our LPS data set that spend much of their
lifetimes as nonprecipitating, low‐RH disturbances but that achieve high
lower‐tropospheric RH for at least 1 day.

3.2. Assessing Candidate Tracking Schemes

Using the above sets of candidate variables, closed contour magnitudes,
radii, and RH criteria, we use TempestExtremes to identify LPS in four
reanalyses (ERA‐Interim, JRA‐55, CFSR, and MERRA‐2; see Table 1)
for the training period of 1990–2003. This 14‐year training period is cho-
sen to overlap with the Sikka archive, which ends in 2003, while leaving
a substantial period for verification (1979–1989). A total of 2,048 track
data sets are thus created (4 reanalyses × 4 candidate variables × 8 closed
contour magnitudes × 2 radii × 8 RH thresholds).The maximum surface
wind speed within 3° of the center is used as the maximum sustained sur-
face wind speed of a storm at a time step, and is used later to classify dis-
turbances as lows and depressions. The land‐sea ratio of the grid point at
the center of each LPS is used for region‐wise categorization, with storms
treated as being over land when this ratio is higher than 0.5. The
TempestExtremes commands for tracking LPS using these criteria are
provided in Appendix B.

Figure 2. Illustration of the greater skill of 850 hPa stream function in
detecting LPS. Each diamond marks the combined Critical Success Index
(defined in text) for one combination of closed contour magnitude,
radius, and relative hum threshold. Shading represents consistency
of the algorithm across reanalyses. The tested variables were mean
sea level pressure (SLP), 850 hPa geopotential (GP850), stream
function of the 850 hPa horizontal wind (STRF850), and
850 hPa relative vorticity (VORT850). Each column
within a variable represents one RH threshold,
from 55% (left) to 90% (right) with an interval of 5%.

Table 2
Variables and Closed Contour Magnitudes Used for Detecting Low‐Pressure Systems

Search variable Closed contour magnitudes

Mean sea level pressure (Pa) 25, 50, 75, 100, 125, 150, 175, 200
Geopotential at 850 hPa (m2 s−2) 25, 50, 75, 100, 125, 150, 175, 200
Stream function at 850 hPa (105 m2 s−1) 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0, 25.0
Relative vorticity at 850 hPa (10−5 s−1) 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0
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We perform a sensitivity analysis by ranking the 512 tracking algorithms, for each of the four reanalyses, by
the combined CSI (Figure 2). As described in the previous section, the combined CSI is a weighted average of
the agreement of each reanalysis track data set with the Sikka archive and the agreement between all reana-
lyses. The top 31 algorithms by this ranking all use the 850 hPa stream function. The top‐ranked algorithm
requires a disturbance to have an 850 hPa stream function that increases by 1.25×106 from the center mini-
mumwithin a radius of 10°, while achieving an 850 hPa RH of at least 85% for at least 1 day. The second‐best
variable for tracking LPS is the 850 hPa geopotential (closed contour magnitude of 125 m2 s−2 and RH higher
than 85%). The lower ranking (32 out of 512) of the geopotential comes mainly from greater disagreement
between reanalysis tracks, that is, a smaller value of CSIEJCM in Equation 2, and algorithms based on geopo-
tential are only slightly less skillful than those based on stream function (Figure 2). Since stream function is
not included in most reanalyses and must be computed prior to running the tracking algorithm, the geopo-
tential is a viable alternative for LPS tracking that requires only a slight compromise in skill. Algorithms
based onMSLP have lower skill, with the highest rank of 133 (out of 512); the lower rank comes mainly from
greater disagreement between reanalyses but with some contribution from disagreement with the Sikka
archive (not shown). The least skillful algorithms all use the 850 hPa vorticity, with the highest rank of
359 out of 512. The vorticity‐based algorithms produce track data sets that disagree most strongly between
reanalyses and that differ most with the Sikka archive. This is notable given the number of past studies that
have used vorticity or potential vorticity to track synoptic‐scale monsoon disturbances in Asia, Africa, and
Australia (Berry et al., 2012; Hunt et al., 2016; Hurley & Boos, 2015; Thorncroft & Hodges, 2001).
Variables and thresholds for the top five ranked algorithms and the top algorithm of each search variable
are depicted in supporting information Table S1.

Although the consistency of an algorithm across reanalyses constitutes a large part of its skill score, the
top‐ranking algorithm also captures more than 80% of LPS in the Sikka archive, our reference data set.

Figure 3. Hit ratio versus false alarm ratio (see text for definition) with respect to the Sikka archive for all LPS
algorithms, shaded by CSIXS for (a) ERA‐Interim, (b) JRA‐55, (c) CFSR, and (d) MERRA‐2. The black circle
represents the selected optimal algorithm (top‐ranked by the combined CSI).
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The fraction of LPS in the Sikka archive that are detected in reanalyses (the hit ratio) is plotted against the
fraction of LPS detected in reanalyses that do not exist in the Sikka archive (the false alarm ratio) in Figure 3.
Tracking algorithms using the 850 hPa stream function and 850 hPa geopotential have higher CSI values
with higher hit ratios and lower false alarm ratios in all reanalyses. In most reanalyses, algorithms based
on MSLP have smaller hit ratios than those based on stream function or geopotential. Vorticity‐based
algorithms have lower CSI values mainly due to higher false alarm ratios in all reanalyses. The
top‐ranked algorithm by the combined CSI (marked by black circles in Figure 3) compares well with the
Sikka data set in all reanalyses, with hit ratios of about 0.8 and false alarm ratios around 0.3.

We also compute the skill scores outside the training period (in the validation period of 1979–1989), finding
that there is little change in the level of agreement between each reanalysis and the Sikka archive; the CSI of
ERA‐Interim, JRA‐55, CFSR, andMERRA‐2 are 0.79, 0.80, 0.79, and 0.71, respectively, in the training period
and 0.78, 0.78, 0.77, and 0.72, respectively, in the validation period. Remarkably, ERA5, which was not used
for training, has a higher CSI (0.83), a higher hit ratio, and a lower false alarm ratio than the other reana-
lyses. This is true despite the fact that ERA5 has hourly, 0.27° resolution while the reanalyses used for algo-
rithm training have grid spacings coarser by factors of 2–6.

For completeness, we also checked whether combining MSLP and 850 hPa vorticity might improve the
tracking algorithm, since previous studies used such combinations of variables (Hunt et al., 2016; Hurley
& Boos, 2015). Algorithms using a combination of MSLP and vorticity had CSI values around 0.6, similar
to those based on MSLP alone. Furthermore, combining stream function and vorticity did not noticeably
improve the skill scores. Finally, we tested whether the skill score would improve by using a variable from
a different vertical level. Using the stream function of horizontal wind at 1,000, 700, and 500 hPa yielded CSI
values lower than those obtained for the 850 hPa stream function.

Using the top‐ranked algorithm, we track LPS in all available years of all reanalyses (Table 1). This includes
ERA5, which was not used for training.

Figure 4. Composite of the vertical cross section of potential vorticity (shaded) and relative vorticity (contours), through
the central longitude of the system, for (a) matches in lows, (b) nonmatches in lows, (c) matches in depressions,
and (d) nonmatches in depressions.
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3.3. Are Nonmatches Real Systems?

We now check whether the “false alarms”—LPS identified in reanalyses by our top‐ranking algorithm but
missing in the Sikka archive—exist due to some error or artifact in the tracking algorithm. We do this by
comparing composites of the structures of reanalysis LPS that match those in the Sikka archive with compo-
sites of those missing from the Sikka archive. We do this separately for monsoon lows and monsoon depres-
sions, since the implications of a false alarm are different when the LPS is a weak LPS compared to a strong
one. We furthermore only include a reanalysis LPS in our composites of false alarms when it is completely
missing from the Sikka archive, as opposed to when it is categorized differently (e.g., here we ignore LPS that
are classified as a depression in a reanalysis but a low in the Sikka archive). These composites are made using
ERA5, since that reanalysis was not used in tuning the tracking algorithm. There are 57 lows and 10 depres-
sions in ERA5 that are missing from the Sikka archive. Composites are created by averaging, in a
storm‐centered reference frame, the three time steps having the largest central MSLP anomaly.

The composites of lows and depressions have structures consistent with those seen in prior studies (Godbole,
1977; Hurley & Boos, 2015), and these exhibit relatively little differences between matches and nonmatches
(Figure 4). The LPS all consist of a column of cyclonic potential vorticity (PV) that extends from the surface
to the upper troposphere, with primary maxima near 500 hPa and secondary peaks around 850 hPa. The
composite relative vorticity is more bottom‐heavy, peaking near 800 hPa. Both the PV and relative vorticity
tilt slightly westward with height and are stronger in depressions than in lows, as expected. For lows, the
nonmatches (i.e., those present in ERA5 but missing from the Sikka archive) are weaker than the matches,
perhaps because the 850 hPa stream function in ERA5 represents weaker systems than were contained in the
MSLP maps on which the Sikka archive was based, or perhaps because our tracking algorithm was better
able to detect weak systems than the subjective analysis used by the Sikka archive. There is no clear differ-
ence between the composites of matching and nonmatching depressions, with any quantitative differences
in magnitude likely not significant considering the low number (10) of nonmatches. Comparisons of compo-
sites of winds, relative humidities, and temperatures yielded similar results (not shown).

We furthermore obtained the daily MSLP charts from the IMD, which are thought to be similar to those on
which the Sikka archive was based, and manually inspected these to search for the 10 depressions present in
ERA5 but missing in the Sikka archive. At the times and locations of all 10 of these missing depressions, we
found LPS‐like features in the pressure charts, with three of the charts clearly showing disturbances marked
on the charts as depressions or a more intense category of LPS. We conclude that the 10 additional depres-
sions in ERA5 are real and were somehow missed when the Sikka archive was created.

Figure 5. Genesis density of LPS for the period of 1980–2003 in the Sikka archive and reanalyses. Kernel density
estimates are used to calculate the genesis density. Numbers in the bottom left corner represent the mean number of
LPS in a season for the period. (a) Sikka, (b) ERA‐Interim, (c) JRA‐55 (d) CFSR, (e) MERRA, and (f) ERA5.
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4. Assessing the LPS Climatology in Reanalyses

We now examine the climatological mean distributions of genesis density, track density, disturbance life-
time, and track length, with the goal of assessing whether the overall statistics of disturbances identified
in reanalyses agree with the well‐known statistics of monsoon LPS.

4.1. Genesis

The boreal summer (June–September) distributions of genesis frequency for all LPS are broadly similar
among all reanalyses and the Sikka archive (Figure 5). The latter has genesis more concentrated over the
northern Bay of Bengal, but with a total number of LPS—14 per summer—similar to that in most of the rea-
nalyses. The total count is higher in MERRA‐2 and CFSR, around 18 per summer.

There is general agreement among the reanalyses, and between the reanalyses and the Sikka archive, regard-
ing the partitioning of LPS into lows and depressions, the rate of genesis over land compared to that over
ocean, and the seasonal cycle of genesis (Figure 6). The most notable outlier is MERRA‐2 which, unlike
the other four reanalyses and the Sikka archive, has more depressions than lows.

Consistent with the spatial distributions of genesis shown in Figure 5, most reanalyses also represent a larger
fraction of LPS forming over land, compared to the Sikka archive (Figure 6). ERA5 has the fewest LPS of all
the reanalyses, though the difference is relatively small, and the ERA5 total count is an almost exact match
to the Sikka archive. The match with the Sikka archive is notable because ERA5 was not included in the
algorithm's training data set. All the reanalyses also capture the greater frequency of LPS in the middle of
summer, although ERA5 shows slightly greater frequency in July while all other reanalyses and the Sikka

Figure 6. (a) The summer monsoon season (June–September) climatology, for the Sikka archive and reanalyses, of the
number of LPS formed over the north Indian Ocean basin and subregions of the Bay of Bengal (BoB), Arabian
Sea (AS), and Indian land mass (Land). (b) Climatological monthly variation of LPS. Monsoon lows and
monsoon depressions are represented as squares and diamonds, respectively. The period of
analysis is 1980–2003.
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archive show greatest frequency in August. This seems to be an improvement over previous reanalysis‐based
tracking algorithms, which showed genesis occurring more frequently in June than in August in
ERA‐Interim (Hurley & Boos, 2015).

4.2. Track Density and Lifetime of LPS

All the reanalyses show a similar track density distribution to that seen in the Sikka archive, although the
reanalyses extend further westward toward northwestern India (Figure 7). The highest track density over
land is found in MERRA‐2; that reanalysis also has the highest number of days with an LPS present, which
is due to both the high genesis frequency and high LPS lifetime in MERRA‐2 (Figure 8).

Lifetimes are generally longer in the reanalyses, with the longest found in ERA5, which has LPS lasting one
to 2 days longer than the Sikka archive. The distributions of lifetimes for all LPS are more strongly skewed in
the reanalyses than in the Sikka archive, with the median lifetime being almost a full day shorter than the
mean lifetime (Figure 8a). Track lengths (in great circle distance between start and end points) are similar
between the reanalyses and Sikka archive, implying a slower translation speed in the reanalyses: 2.3 m s−1

in the Sikka archive and 1.6–1.91 m s−1 in the reanalyses. In all data sets, depressions have longer tracks
and lifetimes than lows, and tracks and lifetimes are longer over ocean than over land.

5. Interannual and Long‐Term Variations
5.1. Interannual Correlations Between Data Sets

The interannual variability of seasonal total counts of LPS, lows, and depressions has a similar magnitude
across reanalyses and the Sikka archive, but these variations exhibit low to modest correlation between data
products (Figures 9a–9c). The correlations between different reanalyses of seasonal LPS counts range from
about 0.5 to 0.75, higher than the 95% confidence level of 0.34 for this sample size, with the two ECMWF
reanalyses being most strongly correlated. Interannual correlations between data sets are weaker for the
individual categories of lows and depressions (Figures 9b and 9c); this is not surprising since differences
in the categorization of an LPS as a low versus a depression can arise from small differences in surface pres-
sure and wind speed. Any negative correlations exist only for these subcategories (e.g., between depression
counts in JRA‐55 and the Sikka archive; Figure 9c) and are not statistically significant. The data set having
the weakest correlations with all others is the Sikka archive; the LPS data set of Hurley and Boos (2015) also
showed little interannual correlation with the Sikka archive. This might arise due to differences in the geo-
physical observations on which each data set is based, on the variables used for tracking, and on other

Figure 7. Track density of LPS for the period of 1980–2003 in the Sikka archive and reanalyses. Kernel density estimates
are used to calculate the track density of LPS. Numbers in the bottom left corner represent the mean number of days
in which LPS are present in a season for the period. (a) Sikka, (b) ERA‐Interim, (c) JRA‐55 (d) CFSR, (e) MERRA,
and (f) ERA5.
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Figure 8. Box‐and‐whisker plots of (a) lifetime and (b) track length of LPS in Sikka archive and all reanalyses. The
horizontal line within the boxes indicates the median, boundaries of the boxes indicate the 25th and 75th percentiles,
the whiskers indicate the 5th and 95th percentile values, and the solid square represents the mean value.
The period of analysis is 1980–2003.

Figure 9. Interannual correlation of the number of Indian summer (June–September) (a) monsoon low‐pressure
systems, (b) lows, and (c) depressions between the data sets, including the Sikka archive and the reanalyses during
1980–2003, the years in which all LPS data sets are available. (d) Year‐to‐year variation in the number of monsoon
depressions in all reanalysis data sets, the Sikka archive, and the IMD data set.
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methodological details. In particular, LPS in the Sikka archive were identified through manual analysis of
surface pressure charts, which were in turn obtained through manual analysis of station observations;
such subjective methods might introduce random and/or systematic errors (e.g., a bias toward identifying
LPS over land).

We now explore the differences that reduce interannual correlations between data sets, using brief statistical
modeling to explain how the modest correlations seen in Figure 9 are consistent with the seemingly good
skill scores shown in Figure 3. We state in section 3.3 that 67 LPS are present in ERA5 but not in the
Sikka archive; these nonmatching storms, which account for about 20% of the total number of storms in
the record, reduce the interannual correlation between those two data sets. We test the sensitivity of the
interannual correlations to missing storms by removing random LPS from the Sikka archive between 1979
and 2003, adding the same number of “false alarm” LPS to random years in that archive, then recalculating
the interannual correlation with the original Sikka archive. Removing 67 random storms and adding the
same number of false alarms degrades the correlation coefficient from 1.0 to an average of 0.62 (with a
95% confidence interval of 0.36–0.81, empirically sampled from 5,000 iterations). Increasing the fraction of
randomly replaced storms to one third of those in the Sikka archive further degrades the correlation

Figure 10. Difference of (a) LPS, (b) low, and (c) depression mean counts in pluvial‐drought summer monsoon years, La
Niña‐El Niño years, and positive‐negative Indian Ocean Dipole years. The vertical lines represent the 95% confidence
interval for the difference in the mean counts. Analysis of each data set includes all available periods of that
data set (see Table 1).
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coefficients, in this statistical model, so that the 95% confidence interval is 0.08–0.7, encompassing the
correlations between the Sikka archive and most reanalyses. Thus, the relatively low interannual
correlation each reanalysis has with our reference data set is consistent with the hit ratios and false alarm
ratios seen in Figure 3. We note that the interannual correlation between the Sikka archive and
ERA‐Interim (0.53) is higher than reported by Praveen et al. (2015) (0.2 to 0.4); those authors detected
LPS using surface pressure, which we show in section 3.2 produces worse skill than detectors based on
stream function (which was used in the tracking algorithm examined here).

In summary, the interannual correlation between two data sets can be greatly reduced when a modest frac-
tion of storms in one data set does not match the other data set. Our statistical modeling showed that repla-
cing 20–30% of the storms in one data set with the same number of randomly distributed false alarms can
reduce the correlation coefficient to the levels of 0.2–0.5 frequently seen in Figure 9. Thus, even though
the reanalyses capture about 80% of LPS in the Sikka archive, we should not expect the interannual correla-
tions between these data sets to be large. Correlations for the subcategories of lows and depressions will be
further reduced by the fact that one in three depressions in the Sikka archive is categorized as a low in the
reanalyses and vice versa. Yet there is clearly some agreement: All data sets, including the Sikka archive,
capture the high number of depressions in 2006 (Figure 9d), which coincides with an Indian Ocean
Dipole event (Krishnan et al., 2011).

5.2. Relation to Interannual Climate Modes

Given the large contribution of LPS to India's total summer rainfall (Yoon & Chen, 2005), some studies have
explored whether interannual variations in LPS activity are associated with interannual variations in total
Indian summer rainfall (Krishnamurthy & Ajayamohan, 2010; Sikka, 2006). We build on this by analyzing
how LPS count, mean lifetime, and track length vary between pluvial and drought years in the Sikka archive
and reanalyses. We define “pluvial” years as years when seasonal total rainfall is more than one standard
deviation above the mean, and “drought” years as those when rainfall is more than one standard deviation
below the mean. LPS counts are significantly higher in pluvial than drought years in four out of five reana-
lyses (Figure 10a), but there are no significant changes in lifetime and track length in four of five reanalyses
(Figures S1a and S2a). Although the Sikka archive shows no change in LPS counts between pluvial and
drought years between 1979 and 2003, Krishnamurthy and Ajayamohan (2010) performed the same analysis
of the Sikka archive for 1901–2003 and found a higher number of LPS and a higher number of days with LPS
conditions in pluvial compared to drought years. When examining how counts of the individual categories of
lows and depressions change between pluvial and drought years, most reanalyses and the Sikka archive
show no detectable signal (Figures 10b and 10c). The rainfall produced by depressions is higher in pluvial

Figure 11. Linear trends in LPS, lows, and depressions in the Sikka archive and reanalyses. The white shaded region
shows trends from 1979 onward, while gray shaded region shows trends from 1958 onward. Error bars represent the
95% confidence interval for these trends. Blue dots and error bars represent the trend and 95% confidence interval,
respectively, for the extended season of May to October. The 95% confidence intervals assume a normal
distribution and thus are 1.96 times the standard error.
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than in drought years, with the seasonal rainfall accumulation occurring within 8° of an LPS center over
Indian land regions differing by 104± 96mm for ERA5 tracks and ERA5 precipitation. For lows and for
all LPS, the 95% confidence interval on the difference between pluvial and drought years includes 0
(Figure S3). Performing this analysis with other rainfall products and reanalysis data sets is deemed outside
the scope of this study.

Interannual variation of the Indian summer monsoon is highly linked to ENSO, with an increased propen-
sity for drought years in the warm phase of ENSO (El Niño) and pluvial years in its cold phase (La Niña). We
find that LPS counts are higher in La Niña years than El Niño years (Figure 10a), and the differences are sig-
nificant in all data sets except the Sikka archive and JRA‐55. When assessing ENSO‐related variations in life-
times and track lengths, the only detectable signal is in ERA‐Interim and ERA5, which exhibit LPS lifetimes
that are higher in El Niño years than La Niña years (contrasting with their lower average counts in those
years; Figure S1a). The fact that a signal is sometimes detected in only one or two out of six data sets shows
that it may be important to reexamine results from prior studies that relied on a single data set. For example,
Krishnamurthy and Ajayamohan (2010) used only the Sikka archive when showing that LPS activity is
roughly equal in El Niño and La Niña years. Hunt et al. (2016) relied on only ERA‐Interim when finding that
depression activity is 16% higher in El Niño than La Niña years.

Finally, we examine covariations of LPS with the IOD, an SST pattern associated with variations in Indian
summermonsoon circulation and rainfall (Saji et al., 1999; Webster et al., 1999). Krishnan et al. (2011) found
that depressions have higher track lengths in positive IOD years, and Hunt et al. (2016) found that depres-
sion lifetime is 12% higher in positive IOD years. We find that only one reanalysis (JRA‐55) shows a change
in LPS counts between positive and negative IOD years (Figure 10a), and another reanalysis (CFSR) shows
longer depression lifetimes (Figure S1c). For all other data sets, the 95% confidence interval on the
IOD‐related changes in counts, lifetimes, and track lengths includes 0.

5.3. Trends in LPS
5.3.1. Linear Trend Analysis
Based on the Sikka archive and the IMD data set of depression counts, previous studies discussed an appar-
ent increase in the number of lows and a decrease in the number of depressions forming each summer
(Jadhav & Munot, 2009; Prajeesh et al., 2013; Vishnu et al., 2016, and references therein). However,
Cohen and Boos (2014) questioned the existence of a decrease in the number of depressions in the past
40 years, based on their finding that no trend in depression counts could be detected in ERA‐Interim and
on their discovery of depressions in that reanalysis that were missing in the IMD data set. Here we examine
whether a trend in the number of LPS overall, or in the number of lows or depressions, can be detected in
any of the track data sets created using our tracking algorithm. We first assess the period since 1979, since
four of our reanalyses start in that year, then compare to results starting in 1958 (for which only JRA‐55,
the Sikka archive, and the IMD data set provide values).

Consistent with previous studies, the Sikka archive shows no trend in the seasonal counts of all LPS since
1979, together with an increasing trend in lows and a decreasing trend in depressions (Figure 11). Any
decreasing trend in depression counts in the IMD data set is weaker and has an error bar that includes 0.
None of the reanalyses show any appreciable trend in the counts of lows or depressions. Similarly, no signif-
icant trend in the total seasonal rainfall produced by LPS, lows, or depression is seen when using ERA5
tracks with ERA5 precipitation (Figure S4); similar trend analyses using other rainfall products will be
undertaken in separate work.

Vishnu et al. (2016) noted that the trend in depressions is not linear, but consists mainly of a large reduction
around 1980, which lies at the beginning of the records discussed in the previous paragraph. Since JRA‐55 is
the only reanalysis with data prior to 1979, we compute the trend in depressions for the more extended per-
iod starting from 1958 in JRA‐55 and compare this with trends from the IMD and Sikka data sets (Figure 11).
The IMD and Sikka data sets show depression counts decreasing at a rate of ‐0.096 and ‐0.14 year−1, respec-
tively (with 95% confidence intervals of ± 0.032 and ± 0.043 year−1; Figure 11, and see the time series in
Figure 9d). The long‐term decrease in depressions in the Sikka archive is opposed by a long‐term increase
in lows, resulting in no trend in total LPS. Any trend in JRA‐55 is substantially smaller than in the Sikka
or IMD data sets and is not significant at the 95% confidence level (Figure 11); the trend in counts of
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depressions in JRA‐55 is ‐0.021 year−1 with a 95% confidence interval of ± 0.024 year−1). No statistically
significant trend is seen in the total number of LPS forming each summer in JRA‐55.

Although the Indian summer monsoon season is commonly defined as occurring June–September, with the
Sikka archive available for only those months, it is possible that the results of our trend analysis would
change if we used an extended season of May–October. Indeed, Xavier et al. (2007) argued that the primary
effect of ENSO on Indian rainfall occurs via its influence on the duration of the rainy season, with La Niña
events allowing it to extend into May and October. Including May and October in our trend analysis for the
period starting in 1958 yields an increase in the magnitude of the depression count trends found in JRA‐55
and the IMD data set, with the JRA‐55 trend becoming significant at the 95% confidence level (Figure 11).
The total number of LPS forming in this extended summer season in JRA‐55 also shows a decreasing trend
that is significant at the 95% confidence level, but there is no discernible trend in lows in JRA‐55. We also
repeated the trend assessment, using the longerMay–October season, for all reanalyses for the shorter period
starting in 1979, with little change in the results: Only ERA‐Interim LPS show an increasing trend significant
at the 95% confidence level.

We also analyze storm count trends using multiple detection algorithms, in order to explore the influence of
parametric and structural uncertainty in the algorithm on our trend assessment. Specifically, we examine
LPS counts obtained using the top five stream function‐based algorithms, the top three geopotential
height‐based algorithms, and the top three MSLP‐based algorithms. No algorithms applied to any reanalysis
show a significant trend starting in 1979 (Figure S5). However, two of the nine algorithms applied to JRA‐55
show a statistically significant decrease in LPS from 1958, and one of the nine shows a significant decrease in
depression counts in that period. All of these trends are of similar magnitude to the those found in JRA‐55
with our primary algorithm (Figure 11).
5.3.2. Change Point Detection
Like any reanalysis, JRA‐55 assimilated data from an observational network that evolved over time, and we
wish to consider whether this might affect any detected trends. For example, satellite data first started to be
assimilated by JRA‐55 around 1980, and there is a large reduction in depression counts in JRA‐55 in that year
(Figure 9d). We calculate the year and magnitude of a single long‐term shift in the summer mean depression

Figure 12. Illustration of a shift in depression counts around 1980. Year‐to‐year variation of depression counts (black
line) in (a) the Sikka archive, (b) the IMD dataset, and (c) JRA‐55. The vertical dashed line is the year of the mean
shift in depression counts using binary change point detection. The star symbol marks the introduction of
geostationary satellite data in the respective data set. The horizontal gray lines shows the summer mean value of
depression counts in the given epoch, and shading shows the 95% confidence interval of the mean values.
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count using a binary change point detection method (Truong et al., 2020), and find that the mean depression
count undergoes a systematic reduction in the early 1980s all data sets: 1983 in IMD and the Sikka archive
and 1980 in JRA‐55 (Figure 12). The shift in the mean values is larger in the IMD data set (decreasing from
7.5± 0.7 to 3.6 ± 0.7 year−1) and the Sikka archive (decreasing from 7.6± 0.6 to 3.0 ± 0.6 year−1) and smallest
in JRA‐55 (decreasing from 5.5± 0.6 to 4.2± 0.5 year−1). The shifts in all three data sets are statistically sig-
nificant at the 95% confidence level. The shift in JRA‐55 in 1980 is contemporaneous with the introduction of
geostationary satellites observations to that reanalysis system in 1979 (Ebita et al., 2011), the date marked by
the star in Figure 12c. Similarly, the IMD started using Indian geostationary satellite data in 1982, which is
contemporaneous with the 1983 shift in depression counts in both the Sikka archive and the IMD data set
(recall that the Sikka archive was constructed by analyzing MSLP maps obtained from the IMD). This sug-
gests that the shift, and by association the linear trends discussed above, might be an artifact of changes in
observational data sources. Formal attribution of these early‐1980s shifts is beyond the scope of this manu-
script, but these results suggest that further study is warranted.

6. Summary and Conclusions

Synoptic‐scale monsoon LPS produce abundant rainfall over South Asia, making the identification of LPS in
estimates of past and future atmospheric states an important task. Yet previous methods for tracking LPS
have relied on subjective or automated methods not systematically assessed for skill or optimality (Hunt
et al., 2016; Hurley & Boos, 2015; Mooley & Shukla, 1987; Praveen et al., 2015; Sikka, 2006). For example,
multiple previous LPS data sets were based entirely on MSLP, even though LPS are known to have peak
intensities several kilometers above the surface (Godbole, 1977). These issues become especially salient
when examining multidecadal trends in LPS activity, because unintentional changes in a subjective method
or trends in the observing network on which an underlying data set is based could bias an analyzed trend.

This study builds on previous literature by introducing a fast and objective tracking algorithm able to iden-
tify monsoon LPS in high‐resolution data sets. Themethod is based on the feature tracking capabilities of the
TempestExtremes package. A sensitivity analysis was performed to choose an optimal algorithm using mul-
tiple reanalyses of various spatial and temporal resolutions. A total of 512 algorithms (defined by different
search variables and values for the closed contour criteria) are applied to four reanalyses for the training per-
iod of 1990–2003. Based on a skill score, the CSI, that compares the reanalyses with each other and with the
Sikka archive (our reference data set), the optimal algorithmwas found to use the 850 hPa stream function of
horizontal wind. The LPS identified with this algorithm in reanalyses are found to match about 80% of LPS
in the Sikka archive. The reanalyses track data sets also contain LPS not present in the Sikka archive. For
instance, the ERA5 data set includes 57 lows and 10 depressions that are entirely missing in the Sikka
archive. Composites of these LPS and the LPS present in the Sikka archive show similar dynamical struc-
tures, so we conclude that the algorithm correctly captures LPS in the atmospheric states represented by
the reanalyses.

Characteristics of the LPS, including distributions of genesis frequency, track density, intensity, lifetime, and
track length, are consistent across all reanalyses and are similar to results from the Sikka archive. The new
reanalysis track data sets also reproduce previously reported monthly and basin‐wise climatological varia-
tions of LPS characteristics. On interannual time scales, LPS counts in the reanalyses have weak correlation
with the Sikka archive. This result may be due, in part, to LPS that are missing from the Sikka archive but
that exist in most of the reanalyses. Indeed, we estimate that if only 20–30% of the storms in one data set
are replaced with randomly distributed false alarms, this is expected to reduce the interannual correlation
coefficient to 0.5 or lower. The better correspondence between the track data sets based on five different rea-
nalyses, with horizontal resolutions ranging from 0.25° to 1.25°, gives confidence that the algorithm can con-
sistently capture LPS in data sets with different resolutions.

Our examination of interannual variations in LPS genesis frequency, track length, and lifetimes illustrate the
importance of assessing signals in multiple data sets. For the period starting in 1979, we find significantly
higher LPS counts in pluvial years compared to drought years in four out of five reanalyses, in agreement
with the longer period (1901–2003) analysis of Krishnamurthy and Ajayamohan (2010). We also find signif-
icantly higher LPS counts in La Niña years relative to El Niño years, again in four of five reanalyses and con-
sistent with Krishnamurthy and Ajayamohan (2010). Associations between LPS counts and the Indian
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Ocean Dipole are detected in only one reanalysis, despite the fact that Krishnan et al. (2011) and Hunt et al.
(2016) reported enhanced depression activity in positive IOD years. The higher depression activity in El Niño
years reported by Hunt et al. (2016) was also not seen in any of the reanalyses we examined.

Past studies of long‐term trends in the IMD and Sikka data sets have found increases in the number of lows
and decreases in the number of depressions (Prajeesh et al., 2013; Rajendra Kumar & Dash, 2001; Vishnu
et al., 2016). Here, however, we do not detect statistically significant trends in summer counts of lows or
depressions in any reanalysis for the period from 1979 onward (the Sikka archive has a strong decrease in
depression counts and an increase in lows for that period). The JRA‐55 reanalysis, which provides data start-
ing in 1958, shows a statistically significant reduction in depression counts only when using an extended
summer season (May–October), and this trend is about one quarter the magnitude of the trend seen in
the IMD data set and Sikka archive. Furthermore, a binary change point detection analysis shows that the
long‐term decrease is consistent with a step‐wise reduction in depression counts in the year following the
introduction of geostationary satellite data into the data sets underlying the IMD, Sikka, and JRA‐55 pro-
ducts. This suggests the possibility that no long‐term reduction in depressions has occurred, and trends seen
in existing data products may be artifacts of change in the observing network; further analysis is warranted.

The new and objective LPS data sets developed here have been made publicly available, together with the
tracking algorithm, to allow their broad use in characterizing LPS activity and understanding LPS dynamics
(doi:10.5281/zenodo.3890646). These data sets and the tracking algorithm may also be useful in assessing
LPS activity in ensembles of global climate models and in characterizing and correcting bias in forecasts
made by numerical weather prediction models. The future release of new reanalysis data for years preceding
1979, such as is expected for ERA5 (Hersbach &Dee, 2016), will also provide new opportunities to reexamine
long‐term trends in LPS activity, especially since those reanalyses include representations of historical
climate forcings by greenhouse gas, aerosol, and land use changes.

Appendix A: Boundary Conditions for Stream Function Inversion
A practical challenge exists when computing the stream function, ψ, of the horizontal wind, u!, on a level of a
vertical coordinate system that intersects the ground; boundary conditions must be imposed on that intersec-
tion when inverting the winds (or vorticity) to obtain ψ. That is, the uniqueness of the Helmholtz decompo-
sition that holds in a spherical domain without boundaries breaks down, and a class of harmonic functions
can be added to ψ while still allowing ∇2ψ to correctly represent the local vertical vorticity. Numerous ways
of dealing with this nonuniqueness have been proposed in the context of atmospheric and oceanic flow
(Lynch, 1988). One method requires the velocity potential, ϕ, to vanish on the boundaries, minimizing the
kinetic energy in the divergent part of the flow (Pedersen, 1971; Sangster, 1960). Another method requires
ψ to be constant along a boundary (Watterson, 2001); this is appropriate when there is zero horizontal diver-
gence along the boundary but is invalid in many cases having large vertical motion along physical bound-
aries, such as upwelling in coastal ocean regions (Li et al., 2006) or strong orographic ascent in the
atmosphere. Lynch (1989) proposed a three‐component partitioning into nondivergent, irrotational, and
harmonic flow, while Li et al. (2006) made the two‐component decomposition unique by introducing a con-
straint to the inversion problem that implicitly determines the boundary condition by minimizing the joint
amplitude of ψ and ϕ.

Here we are concerned with domain boundaries created by the intersection of a pressure surface with topo-
graphy, with the pressure surface lying at a sufficiently high altitude that the boundaries surround relatively
small holes in the otherwise global, spherical domain. Unlike the regional atmospheric model problem in
whichψ and ϕ are obtained in a subdomain of global, nonzero atmosphericflow, we know that nowind exists
outside of our domain (i.e., beneath Earth's surface). We thus follow the suggestion of Morse and Feshbach

(1953) and set the total wind outside the domain boundaries to 0 and invert u! to obtain unique distributions
of ψ and ϕ in the unbounded global domain. Some reanalyses (e.g., ERA‐Interim) extrapolate winds beneath

Earth's surface, so our choice involves replacing those extrapolated values with u!¼ 0. This choice results in
nonzero values of the nondivergent and irrotational wind beneath Earth's surface; these two components
sum to 0 in that region. This contrasts with methods that assumed nondivergent flow along the boundaries
(Watterson, 2001), because we recognize that winds can horizontally converge along the topographic bound-
ary at the grid scale of the data; such convergence is common along the Himalaya and Arakan mountains in
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the summer monsoon. An important point is that our choice of u!beneath Earth's surface, or equivalently of
the boundary condition for ψ, has only minor effects on our numerical identification of vortices because that
choice alters ψ only by addition of a function with zero curvature, and our identification algorithm involves
finding local minima (i.e., regions of positive curvature) in the discretized stream function.

Appendix B: LPS Detection Program
The command‐line syntax to obtain LPS tracks from a 6‐hourly data set using TempestExtremes with a bash
shell is as follows:
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Data Availability Statement

The India Meteorological Department record of monsoon depression tracks was downloaded from the IMD
website (at https://www.imd.gov.in). The Sikka archive was obtained from Sikka (2006). The ERA‐Interim
data set was downloaded from the ECMWF website (at https://apps.ecmwf.int/datasets/data/ interim-full-
daily). The MERRA‐2 data set was downloaded from NASA's Goddard Earth Sciences Data and
Information Services Center (GES DISC) website (at https://disc.gsfc.nasa.gov/datasets? keywords=%
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22MERRA-2%22page=1source=Models%2FAnalyses%20MERRA-2). The ERA5 data set was obtained from
the Copernicus Climate Change Service Climate Data Store (CDS) website (at https://cds.climate.
copernicus.eu/cdsapp#!/home), accessed on 1 March 2019. The CFSR and JRA‐55 reanalysis were
obtained from the Research Data Archive that is maintained by the Computational and Information
Systems Laboratory at the National Center for Atmospheric Research (NCAR). The data are available
online (at https://rda.ucar.edu). The HadISST data set was downloaded from the website of NCAR (at
https://climatedataguide.ucar.edu/climate-data/sst-data-hadisst-v11). The track data sets created in this
work are available through the Zenodo repository (doi:10.5281/zenodo.3890646).
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