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ABSTRACT: Monsoon low pressure systems (LPSs) are the dominant rain-bearing weather system 
of South Asia, often producing extreme precipitation and hydrological disasters in a region inhab-
ited by nearly two billion people. Despite the importance of these storms, no operational system 
has automatically identified and tracked LPS in real time in numerical weather prediction model 
output; many commonly used vortex-tracking algorithms are ill suited for monsoon LPS because 
of the weak winds and cold cores of these systems. Here, we describe a new system that uses 
optimized algorithms to identify monsoon LPS in short- to medium-range forecasts from the U.S. 
Global Ensemble Forecast System (GEFS) and a version of the deterministic Global Forecast System 
(GFS) adapted and used operationally by the Indian Institute of Tropical Meteorology (IITM). We 
also assess the historical performance of these models in forecasting South Asian monsoon LPS, 
comparing this with the performance of the Integrated Forecasting System of the ECMWF. We 
assess the accuracy of model predictions of LPS genesis, position, intensity, and precipitation rates 
for forecast lead times of 1–5 days, yielding quantitative information on model biases to guide 
operational forecasters and disaster managers. The system we introduce here could be extended 
to other low-latitude regions affected by dynamically weak, heavily precipitating atmospheric 
vortices that are often not included in tropical cyclone inventories.

SIGNIFICANCE STATEMENT: South Asia frequently experiences intense rainfall and hydro-
logical disasters produced by atmospheric vortices known as monsoon low pressure systems 
(LPSs). In this work, we introduce the first automated system that uses numerical weather 
prediction model output with a tracking algorithm optimized for the characteristically weak 
winds of monsoon LPS, producing operational forecasts of these storms. This system provides 
forecasts of LPS positions, intensities, and rain rates with accuracies that we quantify here,  
offering valuable information for forecasters and disaster managers that serve the nearly  
two billion people living in South Asia.
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1. Introduction
On the banks of the Mandakini River in the western Himalayas lies Kedarnath, a small  
Indian town visited by hundreds of thousands of tourists each summer (Mahanti 2022; Sati 
2020). Over 4 days in June 2013, nearly a meter of rain fell on Kedarnath and thousands 
of surrounding villages (Dobhal et al. 2013; Houze et al. 2017), triggering flash floods and 
landslides that caused over 6000 deaths and affected half a million people (Guha-Sapir 
et al. 2015; Sati and Gahalaut 2013). Such hydrological extremes occur every few years in 
South Asia (Nikumbh et al. 2020), with other examples being the 0.94 m of rain in Mumbai  
on 26 July 2005 (Kumar et al. 2008), the 2010 Pakistan floods (Houze et al. 2011), the 
2015 Chennai floods (Chakraborty 2016), and the 2018 Kerala disaster (Hunt and Menon 
2020; Mukhopadhyay et al. 2021). Common to all of these examples is the presence of a 
monsoon low pressure system (LPS), a transient atmospheric vortex that produces intense 
precipitation (Sikka 1977) and is associated with more than half of South Asia’s hydrome-
teorological disasters (Suhas et al. 2023).

Monsoon LPSs are cyclonic vortices with typical outer diameters exceeding 2000 km. 
These transient storms form within the larger-scale summer monsoon circulations of South 
Asia (Mooley and Shukla 1987) and Australia (Davidson and Holland 1987) and have some 
dynamical similarity with the vortices and easterly waves that form in the east Pacific 
(Hurley and Boos 2015; Fig. 1a places South Asian monsoon LPS in the global context of 
low-latitude cyclonic vortices). Early work hypothesized that the strong vertical or horizontal 
wind shears of continental-scale monsoon circulations create LPS through one of several 
possible hydrodynamic instabilities (Rao and Rajamani 1970; Krishnamurti et al. 1976). 
More recent analyses have shown that LPS amplification primarily results from barotropic 
instability of the lower-tropospheric monsoon westerly jet, with advection of water vapor by 
the vortex winds also playing an important role (Diaz and Boos 2019a, 2021; Adames and 
Ming 2018; Suhas and Boos 2023; Luo et al. 2023). This formation mechanism can explain 
the observed spatial concentration of LPS over the northern Bay of Bengal during boreal 
summer (Figs. 1a,b), where strong climatological-mean horizontal wind shear and high 
moisture content coincide with the global maxima of LPS genesis and track densities (Sikka 
2006; Ditchek et al. 2016). The barotropic instability and moisture-advection mechanisms 
described above also explain the typical westward propagation of LPS over continental 
India during the 5–10-day lifetime of these storms (see sample tracks in Fig. 1b).

Monsoon LPSs have dynamics, spatial structures, and intensities that render them distinct 
from the canonical population of tropical cyclones, which in turn are rarely observed in 
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South Asia during summer because of the strong vertical shear of the large-scale monsoon 
(Gray 1968). The surface winds of monsoon LPSs are so weak, typically 5–10 m s−1, that 
fewer than 20% of South Asian monsoon LPSs can be found in best track datasets of tropical 
cyclones (Haertel and Boos 2017); the population of cyclonic disturbances in other regions, 
such as the Atlantic and Pacific (Fig. 1a), may be more heavily dominated by traditional 
tropical cyclones. The dynamical weakness of monsoon LPS makes some vortex-tracking 
algorithms—which are tuned to automatically identify tropical cyclones in atmospheric 
data—ill suited for these storms (see next section). Monsoon LPSs are also distinct from 
canonical tropical cyclones in that they have a lower-tropospheric cold core, which can be 
explained by their formation through barotropic instability (Diaz and Boos 2019a), and can 
transit land surfaces without appreciable loss of intensity (Sikka 1977). Their precipitation 
is typically concentrated southwest of the vortex center (Fig. 1c) due to dynamical lifting 
produced by the interaction of the cyclonic vortex with the background vertical shear  

Fig. 1.  (a) Climatology of LPS genesis density (black contours) and track density (shading) from ERA5 
(1979–2022) in local summer (June–September for the Northern Hemisphere; December–March for 
the Southern Hemisphere), with densities being the mean number per season of genesis points and 
tracks within 5° of each geographic location. The magenta box shows the domain considered in this 
study, which contains mainly monsoon LPS. (b) LPS tracks for the year 2022 (cyan lines) overlaid on the 
same quantities as in (a), for the South Asian region. (c) Composite-mean vortex-centered precipitation 
(shading; mm h−1; IMERG) for South Asian LPS in June–September 2000–22, with the storm center (ma-
genta dot) depicted at the median position of all LPSs in geographic coordinates. Storm-centered pre-
cipitation is computed within a 20° × 20° box centered on the LPS track. Vectors show vortex-centered 
composite-mean ERA5 850-hPa winds. The algorithm used to obtain the tracks shown here is described 
in section 2, optimizing monsoon low pressure system tracking.
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(Rao and Rajamani 1970; Sanders 1984), an effect similar to but more pronounced than that 
seen in tropical cyclones in vertical shear (e.g., Jones 1995).

Accurately forecasting the location and intensity of monsoon LPS is vital for providing 
early disaster warnings to the nearly two billion people that inhabit the South Asian mon-
soon domain. While tropical cyclones are routinely identified by operational, automated 
algorithms in forecasts made by numerical weather prediction (NWP) systems (Cangialosi 
2021; Sampson and Schrader 2000; Yu et al. 2013), no analogous effort has been made for 
monsoon LPS. This is true despite the large human population affected by these storms, 
perhaps in part because of the difficulty of tracking such dynamically weak systems. Recent 
research has confirmed the potential utility of short- and medium-term NWP forecasts of 
LPS tracks and precipitation for providing early warning of hydrological disasters in South 
Asia (Suhas et al. 2023). Thus, there is a compelling need for an operational, real-time fore-
casting system for monsoon LPS. Here, we describe such a system, developed through an 
international partnership, that uses short- to medium-range forecasts from NWP models run 
operationally in India and the United States.

For operational forecasts of monsoon LPS to be of practical use, the accuracy of those fore-
casts must be known. We are aware of only two studies that analyzed the fidelity of operational 
NWP models in forecasting monsoon LPS. Sarkar et al. (2021) studied a version of NCEP’s GFS 
model that was modified by the Indian Institute of Tropical Meteorology (GFS-IITM) and is 
used operationally by the India Meteorological Department. The GFS-IITM model performed 
well in simulating the dynamics involved in the transition of weaker LPS (called monsoon 
lows) to stronger LPS (called monsoon depressions) but performed more poorly in forecasting 
the dynamics of monsoon lows that did not intensify to depression strength. However, Sarkar 
et al. (2021) did not assess the model’s accuracy in predicting LPS position, intensity, or rain 
rate. Deoras et al. (2021) assessed South Asian monsoon LPS forecasts in the Subseasonal to 
Seasonal Prediction project (S2S), finding that S2S models underestimated the frequency of LPS 
and were underdispersive in their forecasts of LPS position and intensity relative to ERA-Interim 
and MERRA-2 reanalyses. While Deoras et al. (2021) compared the climatological-mean spatial 
distributions of genesis density in the S2S models with reanalyses, they did not assess the 
model ability to correctly forecast actual genesis events near the location and time they were 
observed. Deoras et al. (2021) also did not compare storm-centered rain rates with observa-
tions (although they did assess how seasonal mean precipitation errors in models covaried 
with LPS occurrence) and did not examine the accuracy of the NWP models used operationally 
by Indian institutions.

The operational system introduced here identifies monsoon LPS in forecasts from the 
GFS-IITM model (mentioned above) and the NCEP Global Ensemble Forecast System (GEFS). 
To provide practical guidance for forecast end users, we evaluate the historical performance 
of these models, as well as that of the ECMWF Integrated Forecasting System (IFS), by com-
paring them with LPS tracks from the ERA5 reanalysis. This assessment focuses on the 
models’ ability to predict the genesis, location, intensity, and precipitation rates of South 
Asian LPS. The results presented here build on previous optimization and validation of an 
LPS tracking algorithm (Vishnu et al. 2020) and assessment of the accuracy of GEFS-based 
probabilistic ensemble forecasts of LPS genesis (Suhas and Boos 2024).

2. Optimizing monsoon low pressure system tracking
Numerous algorithms are routinely used to identify a broad range of atmospheric phenomena 
in gridded data (Leung et al. 2022). Algorithms that track tropical cyclones seem most relevant 
for monsoon LPS, which might be viewed as weak tropical depressions (the weakest tropical 
cyclone category on the Saffir–Simpson scale) embedded in strongly sheared monsoon flow. 
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However, algorithms optimized for 
warm-core tropical cyclones may 
not work well for monsoon LPS, 
which have low-level cold cores 
and comparatively weak surface 
winds of ∼5–10 m s−1. When one 
tropical cyclone-tracking algorithm 
was used to detect South Asian 
monsoon LPS in ERA-Interim data, 
it found about half as many storms 
as in a human-analyzed track data-
set (Dong et al. 2020; Sikka 2006).

The need for a tracking algo-
rithm optimized for monsoon LPS 
motivated a systematic assessment 
by Vishnu et al. (2020) of candidate 
input variables and algorithmic 
details. Those authors then devel-
oped a scheme, which is deployed 
operationally here, that identi-
fies LPS using TempestExtremes 
(Ullrich et al. 2021), software that 
uses parallel processing to rapidly 
find closed contours of a specified 
magnitude in data of arbitrarily 
high resolution. Vishnu et al. (2020) 
found that South Asian monsoon 
LPSs were best detected using the 
streamfunction of the 850-hPa 
horizontal wind, a smoother and 
less resolution-dependent variable 
than vorticity (i.e., the Laplacian 
of the streamfunction), which is 
often used to track vortices (e.g., 
Hurley and Boos 2015; Hunt and 
Fletcher 2019). Monsoon LPSs can 
be difficult to distinguish from the 
noisy background vorticity field but 
are clearly evident as streamfunc-
tion minima. Figure 2 uses ERA5 
data to illustrate this for the storm 
in the below case study, showing 
that streamfunction-based track-
ing yields a longer track that better 
matches the India Meteorological 
Department’s subjective analysis. 
In contrast, vorticity-based track-
ing abruptly shifts the storm center 

Fig. 2.  Illustration of LPS tracking performed using ERA5 
850-hPa (a) streamfunction (m2 s−1) and (b) vorticity (s−1), 
with these variables shown by shading at 0600 UTC  
2 Aug 2023, when the storm in this case study achieved its 
minimum SLP (i.e., maximum intensity). Black dashed lines 
show tracks identified by our algorithm using the respec
tive variable, with filled stars representing the starting 
location at 0600 UTC 30 Jul 2023, open stars marking the 
end of the track, large circles indicating the storm center 
location when streamfunction and vorticity are shown, and 
12-h track positions marked by small circles (in contrast, 
Fig. 3 shows tracks based on 6-h data). Blue lines show the 
subjectively analyzed track from the India Meteorological 
Department, with symbols having the same meaning as 
the black lines.
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to a peripheral vorticity maximum east of the Bay of Bengal shortly after genesis and then 
terminates the track prior to the last few days of the storm’s inland, rain-producing lifetime.

Using streamfunction as a tracking variable also does not involve assumptions of geo-
strophic balance, which are implicit when using geopotential or sea level pressure (SLP) to 
infer a vortex’s circulation. Unlike SLP, the 850-hPa streamfunction furthermore directly 
represents the strongest winds in monsoon LPS, which typically occur at 2–4-km altitude. 
Using 40 years of data from five reanalyses, this algorithm produced LPS tracks that agreed 
well with a hand-analyzed track dataset (Vishnu et al. 2020).

We define intensity metrics based on wind speed and storm central pressure, which are 
also used to classify LPS as monsoon lows (weaker LPS) or monsoon depressions (which 
here include all LPSs stronger than monsoon lows) following traditional criteria of the India 
Meteorological Department (Ajayamohan et al. 2010; Hurley and Boos 2015). A depression 
must achieve peak surface winds greater than 8.5 m s−1 within 3° of the storm center and a 
central SLP at least 4 hPa below the SLP on the storm’s periphery (for details, see Vishnu et al. 
2020). We call this SLP anomaly the “pressure drop,” measuring it as the magnitude of the 
largest closed contour of SLP anomaly that can be drawn around the SLP minimum within a 
10° radius of that minimum, with the SLP minimum located within 3° of the streamfunction 
minimum (Ullrich et al. 2021; Vishnu et al. 2020). The original algorithm also required LPS to 
achieve a minimum 850-hPa relative humidity of 85% along their track to distinguish these 
systems from desert heat lows. As the GEFS and GFS-IITM models systematically underesti-
mate lower-tropospheric relative humidity over India (Mukhopadhyay et al. 2019), here we 
use a relative humidity threshold of 80% in those models.

3. Implementing the operational system
a.  Data sources and model details.  The system uses short- to medium-term forecasts 
from the 31-member GEFS v12 developed by the NCEP (Zhou et al. 2022), as well as the 
deterministic GFS-IITM model. The GEFS model is initialized four times daily and uses a 
cubed-sphere grid of ∼25-km horizontal grid spacing with 64 sigma–pressure hybrid lev-
els. The control run is initialized with the hybrid GFS analysis, whereas ensemble members 
are initialized with the analysis perturbed by the 6-h EnKF forecast ensemble (Zhou et al. 
2022). The GFS-IITM model is a version of NCEP’s GFS model, run operationally at the  
IITM since June 2016. It employs a spectral T1534 grid (nominal 12.5 km grid spac-
ing) with 64 hybrid vertical levels and is initialized twice daily at 0000 and 1200 UTC  
(Mukhopadhyay et al. 2019). India’s National Centre for Medium Range Weather Forecasting 
(NCMRWF) generates initial conditions using the Global Data Assimilation System (GDAS) 
cycle, incorporating denser observations in the Indian region (Prasad et al. 2016). All of 
these descriptions refer to the operational model versions at the time of writing, which may 
differ from those used to produce archived forecasts or those operational after publication.

We compare forecasts from the above two models with those from the ECMWF IFS. How-
ever, we have not implemented operational tracking of monsoon LPS in ECMWF forecasts 
because those are not publicly available in real time. The ECMWF model is also spectral in 
nature, and its latest version uses the O1280 octahedral grid (nominally 9 km in the hori-
zontal) with 137 vertical levels. The model is initialized twice daily at 0000 and 1200 UTC 
using ECMWF 4D-Var data assimilation.

For consistency in our analyses, we use model outputs at a horizontal grid spacing of 0.5° 
and focus solely on forecasts initialized at 0000 UTC. We obtained the GEFS and ECMWF 
forecasts from the TIGGE archive (Park et al. 2008; Bougeault et al. 2010; Swinbank et al. 
2016), which provides GEFS forecasts for lead times up to 16 days and ECMWF forecasts 
for lead times up to 15 days. The GEFS output was stored in the TIGGE archive at 0.5° grid 
spacing, while ECMWF output was linearly interpolated to that grid spacing by the archive’s 
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retrieval system. GFS-IITM forecasts were available at a 0.125° grid spacing for a lead time of 
10 days; bilinear interpolation was used to increase the grid spacing to 0.5° for all variables 
except precipitation, for which conservative regridding was used. For the best comparison 
with the GFS-IITM deterministic model, we only assess the accuracy of control runs from 
the GEFS and ECMWF models, leaving an examination of ensemble genesis forecasts for 
separate work (Suhas and Boos 2024). We assess model accuracy during the June–September 
monsoon season, from 2016 (the year of operational deployment of the GFS-IITM model) to 
2022. Due to limitations in transferring large volumes of data from India to the U.S. site of 
analysis, we limited our analysis of the GFS-IITM model to forecasts initialized 0–120 h before 
the genesis of observed LPS. Since forecasts for some initialization dates are thus omitted for 
the GFS-IITM model, we do not calculate a false alarm metric for that model. For the control 
runs of the GEFS and ECMWF models, an evaluation spanning all June–September days of 
the longer 2008–22 period is shown in Figs. S1 and S2 in the online supplemental material.

We evaluate the performance of forecasts from these 
models using LPS tracks from ERA5 (Hersbach et al. 2020) 
as the reference. Results using the MERRA-2 reanalysis  
(Gelaro et al. 2017) were similar (Figs. S3 and S4).1 To assess 
the accuracy of model forecasts of LPS precipitation, we 
compare them with high-resolution (0.1° × 0.1° grid spacing),  
half-hourly precipitation estimates from the final run of  
the Integrated Multi-satellitE Retrievals for GPM (IMERG; 
Huffman et al. 2020).

b. Track comparison methods. A model forecast track is considered to match a reanalysis 
track if the mean spatial separation between the first four points of the model track and 
the corresponding points in the reanalysis track that occur at the same time is less than 4° 
(Froude 2010; Hodges and Emerton 2015; Deoras et al. 2021). The genesis point is simply 
defined as the first point in time on each track, with tracks obtained by stitching together 
locations of streamfunction minima subject to spatiotemporal separation criteria (Vishnu 
et al. 2020). We require model forecast tracks to have genesis within 5 days of model initial-
ization, thereby eliminating forecasts where genesis is predicted with lead times over 5 days. 
Subsequent analyses demonstrate that genesis-based metrics, such as the probability of de-
tection and the false alarm ratio, have poor accuracy by 5 days of lead time. In cases where 
multiple tracks for a given model initialization time match the same reanalysis track, we se-
lect the model track with genesis closest in time to that of the reanalysis (Zhang et al. 2023). 
Additionally, if a model’s track matches multiple reanalysis tracks, we choose the reanalysis 
track with the minimum mean spatial separation from the model forecast.

In our analysis of model accuracy, we use three time variables: forecast lead time, time 
prior to observed genesis, and observed time (i.e., real wall-clock time). Forecast lead time is 
the number of hours (or days) elapsed since forecast model initialization; this time variable 
is commonly used in analyses of forecasts and is the one we use in most metrics. However, 
when estimating the accuracy of genesis forecasts, we use the number of hours prior to the 
observed genesis time because our metrics are defined with respect to observed genesis 
events. Specifically, model genesis and observed genesis do not need to occur at the same 
time for forecasts to be deemed a match; e.g., a model initialized 2 days prior to the observed 
genesis of an LPS might forecast genesis 1 day before or 2 days after observed genesis and 
would be considered a match if the track met the distance criteria outlined above.

c.  Operational workflow.  The operational system provides forecasts based on both the 
GFS-IITM and GEFS models, with model integration and subsequent processing performed 

1	The atmospheric analysis most similar to the initial 
conditions of the GEFS model is expected to be the 
final operational global analysis (FNL) produced by 
NCEP’s Global Data Assimilation System (GDAS), but 
LPS tracks have not been identified and validated in 
that analysis. In contrast, MERRA-2 and three other 
reanalyses were shown to have hit rates exceeding 
80% when validated against a hand-analyzed LPS 
track dataset (Vishnu et al. 2020).
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in both India and the United States. Having access to forecasts from multiple models is 
usually desirable for human forecasters, motivating the use of both models. The GFS-IITM 
model is run operationally every day by the IITM. The automated workflow and tracking 
algorithm, developed at University of California (UC) Berkeley, are executed daily on an 
IITM computing cluster to transform pressure-level winds into the streamfunction, extract 
other variables (e.g., precipitation), and identify LPS tracks. Graphics are automatically 
generated, then transferred to a website hosted by UC Berkeley (https://worldmonsoons.org/
LPStrackingSite/), and also posted on the IITM short-range prediction site (https://srf.tropmet.
res.in/srf/hires_gefs/files/gfs_lps.php). A parallel workflow is run at UC Berkeley using the GEFS 
ensemble and then displayed on a separate page (http://worldmonsoons.org/LPStrackingSite/ 
index_gefs.html) on the same UC Berkeley website. Graphics on that page differ from those 
on the GFS-IITM page in that they incorporate track probabilities and ensemble predictions 
for LPS intensities and rain rates.

4. Case study of a disastrous storm
We demonstrate the functionality of the operational system using a monsoon LPS from 2023. 
In ERA5 data, this LPS formed over the northern Bay of Bengal at 0600 UTC 30 July 2023 
(gray dot in Fig. 3a). It then propagated northwestward and intensified enough to be included 
as the fourth storm in the IBTrACS archive of 2023 north Indian Ocean tropical cyclones; 
nevertheless, this LPS had a cold core in the lower troposphere for much of its lifetime and  
was not a named tropical cyclone. In IBTrACS, this feature lasted less than 24 h, spanning 
1800 UTC 31 July 2023–1200 UTC 1 August 2023, while our algorithm identified a 7-day 
lifetime in ERA5 with a track stretching over 1000 km inland (gray line in Fig. 3a; see Fig. 2 
for the India Meteorological Department track).

This storm produced heavy rainfall in eastern India, with 24-h accumulations exceeding 
100 mm across large parts of the state of Odisha and reaching 390.6 mm at one station (Min-
istry of Home Affairs 2023a). This raised multiple rivers to a severe or extreme flood stage, 
affecting hundreds of thousands of people in nearly 2000 villages (Ministry of Home Affairs 
2023b; Jha 2023; Press Trust of India 2023). A warning issued by the India Meteorological 
Department (discussed below) placed local authorities on high alert, and disaster response 
teams were deployed for search and rescue operations (Directorate General for Civil Protection 
and Humanitarian Aid Operations 2023). With at most 20 fatalities, the response to this storm 
provides an example of successful disaster risk reduction in Odisha, a region that experienced 
significant reforms in disaster preparedness and management following the loss of ∼10 000 
lives during a devastating tropical cyclone in October 1999 (Walch 2019).

The intensification and northwestward propagation of this LPS were first forecast by the 
India Meteorological Department at 0800 UTC 31 July 2023 (India Meteorological Department 
2023), 1 day after the ERA5 starting point shown in Fig. 3a. The GEFS model successfully 
predicted key elements of this storm for an initialization time more than a full day earlier, 
at 0000 UTC 30 July 2023. The control run with that initialization time matched observed 
peak surface wind speeds for approximately 7 days of lead time and accurately predicted 
storm location over the first half of the track (Figs. 3a,d). When the control run track later 
deviated from the observed track, the peak track density of the perturbed ensemble members 
provided a better match. Similarly, although the control run did not predict the large reduc-
tion in LPS central pressure observed 2–4 days after forecast initialization, some ensemble 
members exhibited intensification that was nearly as strong as observed (Fig. 3c).

The GEFS control run predicted total rain accumulations of 50–200 mm over a region 
encompassing several Indian states and Bangladesh (Fig. 3b). The peak observed impacts 
were limited to the southern and western parts of this forecast region, in the states of Odisha 
and Chhattisgarh, and some areas beyond that forecast region. Nevertheless, a time series 
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of the control run’s peak rain rates within 5° of the storm-track matched observations well 
(Fig. 3e; a 5° distance was chosen because it encompasses the majority of the peak rainfall 
in the composite shown in Fig. 1c); we show in the next section that GEFS forecasts typically 
underestimate peak LPS rain rates. Overall, this operational system provided several days of 
advance warning of the location, intensity, and synoptic-scale rain rates of this storm, making 
that information publicly available in real time through analyses tailored for monsoon LPS.

5. Assessing accuracy to guide forecast use
Having provided a case study of forecasts of one damaging monsoon LPS, we now briefly 
assess the overall accuracy of the models in forecasting South Asian monsoon LPS in a 
multiyear period. Specifically, we evaluate the accuracy with which the GEFS and ECMWF 

Fig. 3.  Snapshot of the operational website for an example LPS. (a) Track probabilities from GEFS forecasts initialized at 0000 UTC 
30 Jul 2023, defined as the fraction of ensemble members passing within 1° of each point over the 10 days following initializa-
tion. The GEFS control track is shown in cyan and the ERA5 track in gray. Genesis locations are marked by circles with correspond-
ing genesis times. (b) Accumulated rain along the LPS track from the GEFS control, consisting of time-integrated precipitation 
within 5° of the vortex center. On the website, the time-evolving rain accumulation can be visualized using the slider below the 
map; here, the static map shows rain accumulated over 10 days since forecast initialization. (right) Forecasts of three intensity 
metrics: (c) maximum pressure drop between the vortex center and its surroundings (see section 2, optimizing monsoon low 
pressure system tracking), (d) maximum surface wind speed within 3° of the vortex center, and (e) maximum rainfall within 5° 
of the vortex center, all from GEFS forecasts initialized 0000 UTC 30 Jul 2023. Blue lines show the control forecast, and blue shad-
ing shows the range of the fifth to 95th percentiles of ensemble members (some ensemble members forecast genesis occurring 
earlier than in the control run or ERA5). Gray lines show observed values from (c)–(d) ERA5 and (e) IMERG.
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control runs, as well as the deterministic GFS-IITM model, forecast the genesis, position, 
intensity, and rain rates of South Asian monsoon LPS over the years 2016–22, using ERA5 
and IMERG as reference datasets. We choose 2016 as the starting year because the GFS-IITM 
model has been operational since then, and we assess a longer (15-yr) period for only the 
GEFS and ECMWF control runs in Figs. S1 and S2. In separate work, Suhas and Boos (2024) 
show that the GEFS and ECMWF control runs have higher accuracy than nearly all of the 
perturbed ensemble members from those systems in forecasting the likelihood of genesis. 
Zhang et al. (2023) and Suhas and Boos (2024) speculated that such greater accuracy of the 
control runs might be caused by the perturbations added to the ensemble member initial 
conditions; in any case, this motivates focusing on the control runs here.

a. Genesis. The NWP models predict approximately the correct number of LPS forming in 
the correct locations each summer but fail to forecast some observed LPSs and predict the 
formation of other storms that were not observed to form (i.e., the models produce false 
alarms). Of the 103 LPS events recorded between 2016 and 2022 in ERA5, the GEFS control 
run successfully predicted ∼70% 12 h prior to observed genesis and ∼40% 2 days prior to 
observed genesis (Fig. 4a); this fraction is referred to as the probability of detection (POD), 
and a successful prediction is as described in the “track comparison methods” section above.  
As stated in that section, we use 
the number of hours prior to ob-
served genesis when assessing 
POD because POD is defined with 
respect to an observed event, and 
model genesis time does not need 
to exactly match the observed 
genesis time for a forecast to be 
deemed a match. The GFS-IITM 
model has POD values lower than 
those of the GEFS control run by 
∼0.1 at most lead times, while 
the ECMWF control run has val-
ues higher by approximately the 
same amount.

For all models, the POD de-
creases nearly linearly with in-
creasing time prior to observed 
genesis, with only ∼10% of ob-
served genesis events captured 
5 days prior to their observed 
genesis time. POD values 5 days 
in advance of observed genesis 
were likely reduced by our choice 
to eliminate forecasts where gen-
esis is predicted with lead times > 
5 days (see the track comparison 
methods section), but values 
1–3 days before genesis were 
likely unaffected: Suhas and Boos 
(2024) obtained a nearly identi-
cal 3-day POD when retaining 

Fig. 4.  (a) POD and (b) FAR for LPS genesis forecasts from con-
trol runs of the GEFS and ECMWF models and from the de-
terministic GFS-IITM model, during June–September 2016–22. 
For GFS-IITM, FAR is not evaluated due to the unavailability 
of data for all days in the season (see the “data sources and 
model details” section).
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lead times up to 10 days in an analysis of probabilistic predictions for years 2021–22. For an 
example goal of correctly forecasting at least 50% of observed genesis events, the ECMWF 
model accomplishes this with ∼2.5 days of advance warning, while the GEFS and GFS-IITM 
models provide ∼1.5 and ∼0.5 days of warning.

Genesis forecast accuracy also depends on the number of false alarms, defined as LPS 
forecasts that do not match any observed LPS. The false alarm ratio (FAR), which is the ratio 
of false alarms to total genesis forecasts made, is ∼0.5 for the GEFS control run at a lead 
time of 2 days (Fig. 4b). The ECMWF model exhibits FAR values lower than those of the GEFS 
control by ∼0.1 at most lead times. In both models, the FAR reaches ∼0.6–0.7 for lead times 
of 3–5 days. Together with the POD values described above, these large false alarm rates at 
5 days of lead time (Fig. 4b) further justify focusing on forecasts with shorter (e.g., 1–3 day) 
lead times.

b. Position and intensity. We now assess the accuracy of LPS location forecasts, which 
are key to predicting hazard risk for a region. Position error, defined as the total distance 
between the forecast track location and the ERA5 track location, has a mean value of 
less than 250 km for all models for lead times up to 4 days (Fig. 5a). This value is only 
10%–20% of the outer diameter of a typical LPS (Hurley and Boos 2015), indicating that 
position errors are typically much smaller than the size of the storms. While the ECMWF 
control run has a smaller mean position error, this intermodel difference is also small 
compared to the typical storm diameter. The GFS-IITM model shows mean position errors 
similar to those of the GEFS control run for lead times up to 3 days; it exhibits larger errors 
at longer lead times, although the difference is small compared to the standard deviation 
of these errors.

Although most prior studies of LPS precipitation did not distinguish between mon-
soon lows and monsoon depressions (e.g., Ajayamohan et al. 2010; Goswami et al. 2006;  

Fig. 5.  Model bias as a function of forecast lead time in (a) track position, (b) pressure drop, (c) maxi-
mum surface wind speed, and (d) mean precipitation. Biases are obtained by subtracting (a)–(c) ERA5 
and (d) IMERG data from the NWP forecasts, with statistics computed over the years 2016–22. Mean 
values are depicted by colored bars and standard deviations by black error bars. Precipitation biases 
are spatially averaged within 5° of the LPS center, while pressure drop and maximum winds are as 
discussed in section 2, optimizing monsoon low pressure system tracking. (e) Storm-centered mean 
precipitation biases for the GEFS control, averaged over forecast lead times up to 120 h. Observed 
IMERG precipitation is shown in black contours, with an interval of 1 mm h−1. (f) Comparison of spatially 
averaged precipitation (within 5° of the LPS center) from IMERG (horizontal axis) with the GEFS control, 
averaged over forecast lead times up to 120 h (vertical axis). Contours show KDEs with the outer con-
tour enclosing 80% of individual values and the inner contour enclosing 20%. Points indicate individual 
precipitation values.

Brought to you by UNIVERSITY OF CALIFORNIA LIBRARY Berkeley | Unauthenticated | Downloaded 02/13/25 06:05 PM UTC



A M E R I C A N  M E T E O R O L O G I C A L  S O C I E T Y D E C E M B E R  2 0 2 4 E2455

You and Ting 2021), recent work showed that depressions produce greater rainfall (Vishnu 
et al. 2023b) and that more South Asian disasters are associated with depressions than 
with lows, even though lows occur more frequently (Suhas et al. 2023). Accurately predict-
ing LPS intensity, which is classified by peak surface wind speeds and the pressure drop 
relative to the background (see the section “optimizing monsoon low pressure system 
tracking”), is thus important for disaster preparation. Both the GEFS and ECMWF control 
runs predict the pressure drop well, with near-zero mean bias at most forecast lead times 
(Fig. 5b). In comparison, the GFS-IITM model underestimates pressure drops by ∼0.5 hPa 
for most lead times, indicating that pressure minima are too weak in that model. Forecasts 
of surface wind speed maxima are approximately unbiased in the ECMWF control (Fig. 5c), 
while the GEFS control and GFS-IITM model have positive mean biases less than 1 m s−1 in 
magnitude. Intensity estimates based on wind speed may be less meaningful than those 
based on pressure drop, because peak wind speeds in LPS may sometimes be elevated due 
to proximity to the climatological low-level monsoon westerly jet (e.g., Cohen and Boos 
2014). Nevertheless, for both metrics, the mean bias is at least several times smaller than 
the standard deviation, so variation in bias among forecasts will be of greater practical 
importance for individual cases than average forecast bias.

Accurately predicting LPS rainfall is essential for effective disaster preparedness, as more 
than 50% of South Asian hydrological disasters in summer are associated with LPS (Suhas 
et al. 2023). When precipitation is averaged over a 5° circle around the storm center, a region 
that encompasses the typical location of peak rainfall in the storm’s southwest quadrant 
(e.g., Sanders 1984; Sikka 2006), all three models slightly underestimate precipitation for 
almost all lead times, with the ECMWF control run exhibiting the largest bias for lead times 
up to 4 days (Fig. 5d). However, this precipitation bias and intermodel differences are small 
compared to the standard deviation across forecasts.

The GEFS forecasts capture the observed peak in rainfall southwest of the vortex center 
(which is shown by black contours in Fig. 5e), but underestimate its magnitude by ∼40% 
and position it farther east than observed (color shading in Fig. 5e shows the model pre-
cipitation bias relative to observations, averaged over forecast lead times up to 120 h; the 
total model precipitation is not shown). The negative precipitation bias in the region of 
the observed maximum and the positive bias to the east together indicate a weakening 
and eastward shift of the rainfall peak in the GEFS model relative to observations. Many 
CMIP6 High Resolution Model Intercomparison Project (HighResMIP) models, which have 
horizontal resolutions approaching those of the NWP models, also simulated LPS peak 
precipitation closer to the storm center than in observations (Vishnu et al. 2023a). The NWP 
models also have difficulty forecasting the most and least intense rain rates. For instance, 
a scatterplot of horizontal mean precipitation averaged over the first 5 days of lead time 
reveals that nearly all GEFS control forecasts underestimate rain rates exceeding 1.5 mm h−1  
in observations and overestimate observed rain rates less than 0.5 mm h−1 [Fig. 5f shows 
individual forecasts as dots with a joint kernel density estimate (KDE) of forecast and  
observed rain rates]. However, the GEFS control more accurately predicts the most com-
monly occurring moderate rain rates, as evidenced by the peak in the KDE lying near the 
1:1 line. While Figs. 5e and 5f show only GEFS results, the GFS-IITM and ECMWF models 
exhibit qualitatively similar behavior.

6. Summary and discussion
In this article, we introduced features of an automated operational monsoon LPS forecast 
system using a case study of a storm that formed over the Bay of Bengal on 30 July 2023 
and subsequently produced floods affecting hundreds of thousands of people. The GEFS 
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successfully predicted the location, peak rain rates, and peak surface wind speeds of this 
storm several days in advance. Our system makes such custom monsoon LPS diagnostics 
from GEFS and GFS-IITM forecasts publicly available within 7–12 h of model initialization. 
The operational system could, furthermore, be adapted for other regions subject to high so-
cietal risk from dynamically weak, heavily precipitating atmospheric vortices that are often 
excluded from tropical cyclone inventories.

In a 7-yr period of forecasts, the GEFS-based LPS prediction system successfully predicted 
∼60% of observed genesis events about 1 day in advance, with the ECMWF model success-
fully predicting ∼70% of events and the GFS-IITM model predicting ∼45%. The ECMWF 
model also had fewer false alarms in its forecasts. However, GEFS LPS forecasts have im-
proved over time, with their accuracies approaching those of the ECMWF model in the last 
3–5 years (Fig. S1). This helps justify the use of GEFS forecasts in our operational scheme, 
especially since those are publicly available in real time while ECMWF forecasts are not. 
LPS genesis forecasts from the GEFS, GFS-IITM, and ECMWF models have generally com-
parable accuracies to those of tropical cyclone genesis (Halperin et al. 2013, 2016; Zhang 
et al. 2023). While one might be able to improve the POD score by modifying the quantitative 
contour-detecting criteria used in the tracking algorithm, such changes might also increase 
the number of false alarms. Vishnu et al. (2020) tuned the thresholds used here to obtain an 
optimal combination of hit and false alarm rates between four atmospheric reanalyses and 
an expert hand-analyzed track dataset and then demonstrated that this tuned algorithm 
worked well in ERA5 (which was not included in the data used for tuning).

All the models predict the mean position of LPS within 400 km of the observed (i.e., re-
analyzed) position for lead times up to 5 days. This is a modest error, less than half the outer 
radius of a typical LPS (Hurley and Boos 2015) and comparable to that of forecasts of strong 
tropical cyclones made by operational NWP models in India (Das et al. 2015; Nadimpalli 
et al. 2020; Routray et al. 2017). The GFS-IITM model underestimated the pressure drop (i.e., 
the dynamical intensity) of LPS by ∼0.5 hPa, resulting in some depressions—which generally 
produce more rain and hydrological disasters (Suhas et al. 2023)—being incorrectly forecast 
as lows. We speculate that this underestimation of intensity might be caused by that model’s 
climatological dry bias over India (which might suppress LPS intensification), its initialization 
procedure, or its subgrid-scale physics. Regardless, this intensity bias is consistent with the 
finding by Sarkar et al. (2021) that the transition of LPS from lows to depressions occurs too 
infrequently in the GFS-IITM model.

Perhaps the most important quantity examined here is precipitation, which was fore-
cast in a broadly similar fashion by all three NWP models. The models captured the peak 
precipitation southwest of the vortex center but underestimated its magnitude (the GEFS 
underestimate was ∼40%). The models also underestimated the highest LPS precipitation 
rates and overestimated the weakest ones. This behavior provides a clear target for bias 
correction, although the small number of high-precipitation events may make it difficult to 
correct the underestimate of intense precipitation. Another promising avenue for improving 
quantitative LPS precipitation forecasts is a switch to convection-permitting models, such 
as the regional version of the NCMRWF Regional Unified Model (NCUM-R) run operation-
ally at 4-km horizontal grid spacing for India (Mamgain et al. 2018). However, the fidelity 
of LPS forecasts in such models still needs to be systematically assessed, since studies 
have not shown a clear improvement of model representations of LPS at horizontal grid 
spacing below 25 km (Hunt and Turner 2017; Diaz and Boos 2019b; Hazra and Pattnaik 
2021; Vishnu et al. 2023a). Further work is also needed to assess how LPS forecast error is 
affected by model initialization, model physics, and the climatological dry bias over India 
in the GFS-based models. Alternatively, LPS properties might be forecast using statistical 
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or machine learning algorithms instead of dynamical NWP models. The results presented 
herein provide a reference level of accuracy that such algorithms should achieve to be of 
practical use.
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