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Influence of monsoon low pressure systems on South Asian
disasters and implications for disaster prediction
D. L. Suhas 1✉, Nandini Ramesh 2, Ram M. Kripa 1 and William R. Boos 1,3

Transient atmospheric vortices called monsoon low pressure systems (LPS) generate a large fraction of total rainfall over South Asia
and often produce extreme precipitation. Here, we assess the influence of these storms on the occurrence of disasters, using
information from the Emergency Events Database (EM-DAT) that we geocoded and then associated with LPS tracks. We show that
more than half of hydro-meteorological disasters over South Asia during summer are associated with these LPS events. Weaker LPS
(which are called monsoon lows) occur more frequently than stronger LPS (called monsoon depressions), but the stronger LPS
produce a larger number of disasters. Furthermore, although many prior studies have shown that the peak rainfall in LPS falls
southwest of the vortex centre, the disasters are concentrated on the northern edge of the LPS tracks, along the Himalayas and
upper basins of the Ganga and Brahmaputra rivers. Observations show a sharp peak in rainfall on the day of disasters, confirming
the physical link between LPS and these hydro-meteorological disasters. A similar peak in rainfall is found in weather forecasts
made up to five days before the disaster, suggesting that short-term precipitation forecasts can be useful in disaster preparation.
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INTRODUCTION
Globally, natural disasters affect many millions of people each year
and cause tens to hundreds of thousands of deaths annually1,2.
While the frequency of disasters seems to have increased over the
last few decades3,4, improvements in warning systems and
mitigation strategies have reduced some of their impact5–8. This
motivates efforts to not only understand the factors responsible
for disasters, but to better forecast and prepare for these events.
South Asia is especially vulnerable to natural disasters, due to its

abundant meteorological and seismic hazards, its high population
density, and its lower level of economic development6,9. Floods
and storms are especially prominent in South Asia, producing
60–80% of the total number of natural disasters there10,11.
Compared to geological disasters, such hydro-meteorological
disasters also have a higher risk of transforming into a large-
scale catastrophic disaster4,12.
Monsoon low pressure systems (LPS) are the principal rain-

bearing systems observed over South Asia during boreal summer,
forming and propagating within the larger, continental-scale
monsoon circulation. These atmospheric vortices have a horizon-
tal scale of about 2000 km and last for about 3–6 days13,14. They
form most often over the Bay of Bengal and propagate
northwestward, with peak precipitation falling southwest of the
vortex centre15,16. Individual LPS are typically classified as weaker
monsoon lows or stronger monsoon depressions, based on the
strength of their winds17–19. The total population of LPS is
collectively responsible for a large fraction of monsoonal
precipitation over South Asia13,20,21, and individual LPS are often
associated with extreme rainfall events18,22,23. A recent study
showed that over 80% of the extreme precipitation events over
Central India occur on days when an LPS exists24.
While many studies have explored the association between

monsoon LPS and extreme precipitation events18,24,25, none have
yet determined how many natural disasters in South Asia are
caused by LPS and their associated rainfall. This task is undertaken

here. Specifically, we geocode hydro-meteorological disasters in
South Asia from a mass-casualty disaster dataset, then associate
these with LPS tracks obtained from an automated tracking
algorithm applied to atmospheric reanalysis data19. We examine
the geographic distribution of these disasters along with the
associated time series of rainfall. We also briefly analyze the skill of
short-term forecasts of past rainfall associated with disasters, and
discuss the utility of such forecasts in disaster preparation. The
results are presented in “Results” and conclusions are provided in
“Discussion”. Data and methodology employed in our study is
outlined in “Methods”.

RESULTS
Disaster association with LPS tracks
According to EM-DAT, South Asia has experienced 344 disaster
events, affecting 2394 disaster locations during June to September
of 1990–2019 (Table 1). More than 90% of these disaster events
are of hydrological or meteorological origin. On associating the
hydro-meteorological disasters with LPS tracks, we find that more
than half of the disaster events can be tied to LPS (Table 2). Here,
we associate the disaster event with an LPS if at least half of the
disaster locations constituting a given disaster event are within
800 km of the LPS track. More details regarding this are discussed
in the “Methods” section. One important result can be noted
immediately: although monsoon lows occur more frequently than
depressions, the depressions are responsible for more disasters.
There is some overlap between the lows and depressions, as a
single disaster event can be associated with multiple LPS; this is
why the sum of the disaster events associated with lows and those
associated with depressions is about 25% larger than the number
of events associated with all LPS.
There is a spatial offset between the regions of peak LPS track

density and the regions in which LPS-related disasters are most
frequent. The precipitation associated with monsoon LPS has a
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peak over central and western India, with heavy rainfall also
observed over eastern India and the foothills of the Himalayas24;
this is consistent with the location of LPS tracks (brown lines in
Fig. 1a). In contrast, the hydro-meteorological disasters associated
with monsoon LPS are mostly concentrated along the Himalayas
and the upper basins of the Ganga and Brahmaputra rivers, with a

substantial number also present in other river basins (red dots in
Fig. 1a). In fact, about 60% of these disasters are due to riverine
floods, according to EM-DAT, and such floods can be caused by
both local and upstream rainfall, with some temporal offset. For
example, the Ganga and Brahmaputra basins are over 1000 km in
horizontal extent, and it can take three weeks for water to travel
from the uppermost parts of those basins to the river mouth26.
Our analysis does not account for large temporal offsets between
LPS precipitation and resulting floods, but given typical LPS
propagation speeds of 2–3ms−1 and the 800 km radius we use to
associate a disaster with an LPS, this allows for about four days of
offset between the peak precipitation near the centre of a typical
LPS and the occurrence of a disaster. Larger temporal and spatial
offsets between precipitation and flooding are expected to shift
disasters relative to precipitation for some of the riverine floods;
these are not included in our analysis, but a relevant example is
discussed in “Precipitation forecast skill”.
A storm-centred composite of disaster frequency confirms that

the disasters associated with LPS predominately lie along the
northern edge of the LPS tracks (Fig. 1b). This is true even though
the peak precipitation in LPS is well-known to typically fall
southwest of the vortex centre13,27,28 (Supplementary Fig. 1). Since
disaster risk depends on human exposure and vulnerability, as
well as geomorphic factors that control the likelihood of a given
rainfall event to produce a flood29, this spatial offset may result
from a number of factors. One important factor is the large human
population density30,31 along the Ganga and Brahmaputra river
basins (Supplementary Fig. 2a). The peak population lies mostly to
the north of the LPS tracks, which can also be seen in an LPS-
centred composite of population density (Supplementary Fig. 2b).
This alone shifts the human exposure to LPS rainfall northward
relative to the LPS tracks. Geomorphic factors may also be
responsible for shifting the frequency of disaster occurrence
toward Nepal, as the Himalayas are prone to floods and landslides
during extreme precipitation events32,33.
We now test whether the association between LPS and disasters

may occur by chance, determining how much the presence of an
LPS raises the probability of disaster occurrence. The geographic
distribution of disaster frequency is shown in Fig. 2a, in terms of
the total number of disaster locations occurring in individual
2∘ × 2∘ subregions during June–September of 1990–2019. As in
Fig. 1a, the disasters remain concentrated mainly along the
Himalayas and upper basins of the Ganga and Brahmaputra rivers,
with parts of those regions experiencing more than 100 disasters
per 2∘ × 2∘ subregion over the time span considered (note the

Table 1. Summary of the EM-DAT dataset for disasters over South Asia
during June–September 1990–2019.

Description Count

Total disasters 344 (2394)

Hydrological 286 (2219)

Meteorological 31 (105)

Geophysical 12 (44)

Biological 15 (26)

The number of disaster events is shown for each category, with the
number of disaster locations in parentheses. Here, the disaster event refers
to a single large-scale event, while the constituent locations affected by it
are referred to as disaster locations.

Table 2. Numbers of hydro-meteorological disaster events and
subsets associated with LPS.

Description Count

Hydro–meteorological disasters 317

Disaster events associated with LPS 180

Disaster events associated with depressions 129

Disaster events associated with lows 103

Disaster events associated with both depressions and lows 52

Number of depressions 201

Number of lows 304

The sum of disaster events associated with depressions and lows is larger
than the number associated with LPS because the same disaster event can
be associated with multiple LPS. The number of depressions and lows refer
to the count over the domain 0∘N–40∘N and 50∘E–100∘E, during
June–September of 1990–2019.

Fig. 1 Spatial distribution of disasters. a The location of hydro-meteorological disasters (red circles) associated with monsoon LPS and the
tracks of LPS (in brown), during June–September of 1990–2019. Only the tracks of LPS associated with disasters are shown. Major rivers are
shown in blue. b The location of disasters relative to the LPS centre. The relative distance is computed at the time of minimum separation
between the disaster location and LPS centre. Black dashed circle indicates the 800 km radius (at 20∘N), that is used to associate disasters with
monsoon LPS.
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logarithmic colour scale). The fraction of days for which each
2∘ × 2∘ subregion is under the influence of LPS (meaning that the
region lies within 800 km of an LPS centre) is shown in Fig. 2b. The
peak occurs over eastern India, where about 50–60% of days in
June-September are under the influence of LPS. However, the rest
of South Asia, including regions with the highest frequency of
disasters like the foothills of the Himalayas, are under the
influence of LPS for less than half of the monsoonal season. The
relative risk, defined as the ratio of the probability of occurrence of
disasters during LPS events to the probability of disasters in the
absence of LPS, is shown in Fig. 2c. Relative risk >1 indicates that
the risk of disasters is increased when LPS are located within 800
km of the grid cell34. Most of the domain has a relative risk much
greater than 1, with many of the grid points being statistically
significant, as inferred from the 95% confidence interval of relative
risk being above unity35.
We next examine the fraction of disasters associated with

stronger and weaker LPS (depressions and lows, respectively). The
fraction of disaster locations associated with all monsoon LPS in
each of the individual 2∘ × 2∘ subregions is shown in Fig. 3a. Over a
large part of the domain, more than half of the disaster locations
are associated with LPS, even though these regions are under the
influence of monsoon LPS for <50% of the monsoonal season
(Fig. 2b). This is consistent with our relative risk calculation above.
The contribution of monsoon depressions is above 50% over most
of the domain, while disasters associated with lows are more
concentrated over Nepal, Bhutan, and northeastern India as well
as along the Ganga and Brahmaputra river basins (Fig. 3b, c), as

these regions experience higher track density of lows than
depressions (Supplementary Fig. 3).
These results have a few caveats. First, although a large fraction

of disasters over central and peninsular India is associated with
LPS, the number of disasters occurring over these regions is
comparatively low (e.g., Fig. 1a). Second, some disasters over the
west coast of India might be caused by precipitation produced by
mid-tropospheric cyclones36; some of these disasters may be
classified here as being associated with LPS because mid-
tropospheric cyclones can evolve from LPS37, and the extension
of those cyclones into the lower troposphere would allow those
storms to be included in our LPS dataset.

Observed precipitation
The algorithm that we used to detect LPS identified these storms
using patterns of winds in the lower troposphere, so the physical
link between LPS and the precipitation involved in hydrological
disasters still needs to be established. Observed precipitation
(from GPM) shows a peak in rainfall on the day of disasters in the
composite mean (Fig. 4), confirming that physical link. Here the
time series of precipitation is constructed by taking the mean
rainfall within a 1∘ radius of each disaster location, averaging it
over the locations associated with each disaster event, then taking
the mean across all the disaster events. This ensures that few
disaster events with a large number of affected locations do not
bias our analysis. The peak rainfall occurs on the day of the
disaster (day 0) and has a mean amplitude of about 30 mm/day.
This is less than the typical peak LPS rainfall38, but here we are

Fig. 2 Association of LPS with disaster occurrence. a Number of disaster locations associated with monsoon LPS, b fraction of days in the
June–September season on which the region is under the influence of LPS (i.e. within 800 km of an LPS track) and c the relative risk of
disasters due to the presence of LPS, all in individual 2∘ × 2∘ subregions. Relative risk >1 indicates that the risk of occurrence of disasters is
increased due to the presence of LPS. Stippling indicates the region where the 95% confidence interval of relative risk is above the value 1.
The plots are computed for June–September of 1990–2019.

Fig. 3 Fraction of disasters associated with LPS. The fraction of disaster locations associated with a all LPS, b depressions, and c lows, during
June–September of 1990–2019.
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examining the precipitation at the location of disasters, which
need not align with the location of the precipitation peak.
The mean rainfall on the day of the composite mean disaster

(day 0) is about 50% higher for disasters associated with LPS than
for non-LPS disasters. This suggests a physical link between LPS,
the extreme precipitation produced by LPS, and the occurrence of
disasters. Furthermore, peak rainfall on day 0 is higher for disasters
associated with depressions as compared to those associated with
lows (not shown). Since the EM-DAT dataset from which disaster
locations and times are obtained contains no physical environ-
mental variables, it is notable that these precipitation time series
result from composites based only on our geocoded EM-DAT
coordinates. It is also consequential that precipitation peaks on
the day of disasters and not a day or two before, at least in the
composite mean, and that precipitation rates are higher for LPS-
related disasters.

Precipitation forecast skill
We now assess the skill with which precipitation at the location of
LPS-associated disasters can be forecast. We assess this for short-
term (1–5 days lead time) predictions made with the ECMWF

model, as described in the “Methods” section. Figure 5a shows the
time series of predicted daily rainfall for the disasters associated
with monsoon LPS, with forecasts made 24, 72 and 120 hours
before each day in the composite time series. Figure 5b shows a
similar time series for forecasts made at various times before the
day of disaster. Results from these two methods are shown to
provide two distinct perspectives on the predictive skill. For
example, Fig. 5a shows forecasts made 72 h before each day in the
disaster time series, while Fig. 5b shows the forecast made only
once 72 h before the day of the disaster. In both cases, a peak in
rainfall occurs at day 0 for various forecast lead times, although
the peak decreases in magnitude with increasing lead times. And
similar to observed precipitation, the mean rainfall on the day of
the disaster (day 0) is about 50% higher for disaster events
associated with LPS than for those not associated with LPS
(Supplementary Fig. 4). The predicted precipitation peak on the
day of the disaster is about 20% lower than the observed peak
(compare Figs. 5 and 4a). The underestimation in the ECMWF
model can also be seen in storm-centred composites and a scatter
plot of spatially averaged precipitation (Supplementary Fig. 1),
where the ECMWF model underestimates the magnitude of peak
precipitation. But the model forecasts are, if anything, slightly

Fig. 4 Observed GPM precipitation for disaster events. Composite mean time series of observed daily rainfall (GPM) at the disaster location
for the disaster events (a) associated with LPS and (b) not associated with LPS. Day 0 corresponds to the day the disaster occurs. The time
series is computed by taking the mean rainfall within 1∘ radii of the disaster locations, first averaging over the various locations associated with
a given disaster event, and then taking a mean across all the disaster events. The bars mark the 25th and 75th percentiles. The plots are for the
years 2001–2019. Black dashed lines show the monthly climatological rainfall averaged over the disaster locations.

Fig. 5 ECMWF precipitation forecasts for disasters associated with LPS. Time series of ECMWF model forecast daily rainfall at the disaster
location for the disaster events associated with LPS, a for forecasts made 24, 72, and 120 h before each day in the time series, and b for
forecasts made 24, 72, and 120 h before the day of the disaster. Day 0 corresponds to the day the disaster occurs. The shaded region spans the
25th and 75th percentiles. The plots are for the years 2007–2019.
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underdispersive compared to the observations (as indicated by
the error bars in Figs. 4 and 5), as is also seen in many of the
Subseasonal-to-Seasonal (S2S) model forecasts39. Nevertheless, a
clear peak in rainfall with forecasts made even five days before
disasters suggests that short-term forecasts can be used to
improve disaster warning and preparation.
We now discuss brief case studies of two well-known disaster

events: flooding in Mumbai in 2017 and the 2010 Pakistan floods.
The Mumbai flood was associated with a monsoon depression
that had genesis over the Bay of Bengal on August 26, 2017
(Fig. 6a). It travelled westward and passed Mumbai on August 29,
producing heavy precipitation near 80 mm/day (Fig. 6b). A strong
precipitation peak was seen in ECMWF forecasts made up to 72 h
before the disaster, although the forecast with lead time of 72 h
predicted a precipitation peak nearly twice the observed
magnitude; the 120-h forecast did not show intense rainfall in
Mumbai.
Our second brief case study focuses on the 2010 floods in

Pakistan, which occurred when a monsoon depression formed
over the Bay of Bengal on July 24, 2010 and propagated westward
to reach the Arabian Sea around July 28. Past work has argued
that this depression combined with anomalous high pressure over
the Tibetan Plateau to produce southeasterly upslope flow,
moistening, and heavy precipitation over Pakistan near the Indus
Valley23. However, as most of the EM-DAT disaster locations
associated with this disaster event are further than 800 km from
the LPS track (Fig. 6a), our analysis did not associate this event
with monsoon LPS. We nevertheless include this case study here
to illustrate some ways in which our analysis may underestimate
the contribution of LPS to hydrological disasters; the effects of
monsoon LPS can extend beyond the 800 km distance from the
LPS track used in our attribution. Observed GPM precipitation for
the 2010 Pakistan flood has a peak on the day of the EM-DAT
disaster with magnitude of about 60 mm/day. The ECMWF model
forecasts have a peak on the day of the disaster, even for forecasts
made up to five days in advance; these forecasts underestimate
the magnitude of the precipitation peak by about 30%.

DISCUSSION
Here we associated monsoon LPS with the occurrence of natural
disasters in South Asia. We used geocoded disaster information
from EM-DAT to associate hydro-meteorological disasters with LPS
for the rainy season of June–September. The disasters are most
heavily concentrated along the Himalayas and the upper basins of
the Ganga and Brahmaputra rivers. We found that more than half
of disasters are associated with monsoon LPS. Furthermore, the

disasters associated with monsoon depressions are more frequent
and geographically widespread, with stronger precipitation, as
compared to the disasters associated with monsoon lows.
Although LPS occur somewhat frequently, with around 15 forming
each summer over South Asia, their association with disasters is
stronger than what would occur by chance. Specifically, the
relative risk of a disaster occurring when an LPS is present within
800 km of a location is larger than 1 in most of our domain, with
relative risk exceeding 10 in many regions.
We found that disasters occur mostly along the northern edge

of the main cluster of LPS tracks, while peak rainfall in LPS is well-
known to lie southwest of the LPS centre. We confirmed this
location of peak rainfall in our track dataset (Supplementary
Fig. 1), so this discrepancy is not caused by anomalous behaviour
of the LPS in our dataset. Given that geomorphology, fluvial
transport, and groundwater hydrology all control how precipita-
tion is related to flood characteristics, it is not surprising that there
is a spatial offset between the peak LPS rainfall and the disaster
location. Furthermore, we illustrated how human exposure may
contribute to such offsets, with the peak population density
located hundreds of kilometres to the north of the peak
precipitation in a storm-centred composite of LPS (Supplementary
Fig. 2).
Observations obtained from GPM show a sharp peak in rainfall

on the day of disasters. This peak is more prominent for disasters
associated with LPS than for non-LPS disasters, which suggests a
physical link between LPS and hydro-meteorological disasters.
Numerical weather prediction model forecasts also show a similar
peak in precipitation for disasters associated with LPS. This peak is
clearly visible for forecasts made even up to five days before
disasters, although the peak rainfall decreases with increasing
forecast lead time. These short-term forecasts of LPS tracks and
precipitation might thus be useful in designing disaster early
warning systems and in improving disaster preparedness.
Although it was not a focus of our analysis, we briefly examine

the occurrence of fatalities in LPS-associated disasters. The mean
number of fatalities in disasters associated with monsoon
depressions is higher than that in disasters associated with lows
(Supplementary Fig. 5), but the uncertainties are large enough
that these differences are not distinct when considering the 95%
confidence interval of the means. A distinct difference is found
between the average fatalities in disasters associated with
multiple LPS and the average in single monsoon lows. This
highlights the importance of considering the impacts of LPS
travelling through regions that were recently traversed by another
LPS, though more work is clearly needed to understand the
relevance of geophysical hazards such as elevated river and

Fig. 6 Case study of two disaster events. a LPS track and disaster locations (filled circles) for the 2017 Mumbai flood and 2010 Pakistan
floods. The position of the LPS at the start date of the disaster events are indicated by the crosses. Also shown are the time series of daily
rainfall from GPM observations and ECMWF model forecasts at the disaster location for the b Mumbai and c Pakistan floods. The ECMWF
forecasts are made 24, 72, and 120 h before the day of the disasters. According to the EM-DAT database, the flood in Mumbai started on
August 29, 2017 and the Pakistan flood started on July 28, 2010. Black dashed lines show the climatological monthly mean rainfall at the
location of the disasters.
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groundwater levels and the time-evolution of social vulnerability.
Future work could also assess the possible influence of LPS
characteristics on the severity of disasters as well as the influence
of co-occuring phenomena, like the boreal summer intraseasonal
oscillation (BSISO), that are thought to alter LPS and their
associated precipitation40–42.

METHODS
Datasets
Disaster information is obtained from the Emergency Events
Database [EM-DAT43], and is then geocoded using the Wrangler
for Emergency Events Database (WEED; https://github.com/cran/
weed) package44. As our main focus is South Asia, we only
consider disasters occurring in India, Pakistan, Bangladesh, Bhutan,
Nepal, and Sri Lanka. We also restrict our analysis to the months of
June–September, as monsoon LPS are mainly active during this
summer monsoon season. EM-DAT classifies disasters into
categories based on the primary triggering event; we only
consider hydrological and meteorological disasters, thus excluding
disasters caused by earthquakes, drought, epidemics, and other
events unrelated to precipitation. A single disaster event often
affects multiple locations, so here we refer to each potentially
large-scale event as a “disaster event”, and the constituent
locations as “disaster locations”. As disaster information over
South Asia is more sparse in the earlier part of the twentieth
century, we limit our analysis to 1990–2019. For this period, EM-
DAT has about 492 disaster events, of which 67 do not have
specific dates of occurrence. In addition, 81 EM-DAT disaster
events have information only at the state level, preventing us from
assigning a geographic location more precise than the centre of
the state; we also excluded those events, leaving 344 events
considered in this study. However, analyses show that including
these events (by using the centroid of the state as the location)
does not substantially alter our results.
Tracks of monsoon LPS are obtained from the dataset compiled by

Vishnu et al.19, which used an objective algorithm based on the
TempestExtremes software45 to optimally identify LPS tracks in five
atmospheric reanalyses. Here we use LPS tracks identified in ERA546,
the most recent reanalysis of the European Centre for Medium-Range
Weather Forecasts; this is a fifth-generation reanalysis providing
atmospheric state estimates at hourly and 0.25∘ horizontal resolution,
based on four-dimensional variational assimilation of a vast amount of
satellite and in situ observations. The LPS tracks were further classified
as monsoon depressions and lows based on the minimum surface
pressure and maximum wind speeds achieved along each track. More
details regarding the tracking algorithm and LPS classification can be
found in Vishnu et al.19.
Daily mean rainfall at the locations of disasters is obtained from

the Global Precipitation Measurement Mission (GPM) product,
which provides high-resolution (0.1∘ × 0.1∘) rainfall measurements
from the year 2001 onward47. To estimate the skill of rainfall
predictions at disaster locations, we use short-term weather
forecasts (e.g. at 10-day lead time) from an archive of past
numerical weather prediction model output: the THORPEX
Interactive Grand Global Ensemble [TIGGE48]. Specifically, we use
the deterministic ECMWF model forecasts issued at 00 UTC each
day. The forecasts are available from the year 2007 onward at a
horizontal resolution of 0.1∘ × 0.1∘. In unpublished work, we have
found that the ECMWF model is able to capture about 85% of the
LPS tracks identified in ERA5 and, for short lead times of <5 days,
has a mean track position bias of 100–300 km, much smaller than
the typical horizontal scale of these storms.

Association of disasters with LPS
A disaster location is associated with a monsoon LPS if the LPS
track passes within 800 km of the disaster location anytime during

the duration of the disaster. The typical horizontal scale of
monsoon LPS is about 2000 km and this 800 km radius was
chosen for consistency with prior work that found this value to be
near optimal for attributing rainfall to LPS21,24,49. Here, we are
further assuming that the hydro-meteorological disasters occur-
ring within this 800 km radius are due to the precipitation
associated with monsoon LPS; since our identification and
tracking of LPS is based on lower-tropospheric winds and not
rainfall, this allows us to test this assumption (see Section
“Observed precipitation”). It should be noted that the use of a
fixed radius can include contributions from non-LPS events like
unrelated small-scale convective activity21, but it can also exclude
disaster events that occur far from the region of precipitation, like
downstream riverine floods. However, the use of a more complex
method like catchment analysis is beyond the scope of this study,
and for simplicity we use a fixed radius of 800 km to associate
disasters with monsoon LPS.
Usually, a single disaster event affects multiple locations. We

classify a disaster event as associated with an LPS if at least 50% of its
locations are individually associated with the LPS. Although this
attribution fraction of 50% as well as the attribution radius of 800 km
were chosen somewhat subjectively, our conclusions remain
qualitatively unaffected by changes in these parameters. We varied
the attribution radius from 500 to 1000 km and considered
attribution fractions ranging from 1% to 100%, verifying that our
results did not qualitatively change. Another caveat is that the
mapping of disasters to LPS is not always unique, as some disaster
events can be associated with multiple LPS tracks passing within 800
km of the disaster location. Disaster events that are associated with
multiple LPS may have greater severity (e.g. Supplementary Fig. 5).

DATA AVAILABILITY
Disaster information is obtained from the Emergency Events Database (https://
public.emdat.be), and is then geocoded using the Wrangler for Emergency Events
Database (WEED; https://github.com/cran/weed) package. Tracks of monsoon LPS
from ERA5 are available in the Zenodo repository (https://doi.org/10.5281/
zenodo.3890646). GPM precipitation data is available at https://gpm.nasa.gov/data/
directory. ECMWF model forecasts were downloaded from the TIGGE archive (https://
apps.ecmwf.int/datasets/data/tigge).
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Supplementary Discussion

Skill of ECMWF precipitation forecasts

LPS storm-centred precipitation composites show that the ECMWF forecasts

are able to capture the observed precipitation peak to the southwest of the vor-

tex centre, but it underestimates the peak magnitude (Supplementary Figure

1). Scattered plots of spatially averaged precipitation (within 5◦ of the LPS

centre, rather than 8◦, to better capture the highest rain rates) shows the

ECMWF model having issues forecasting heavy precipitation, especially for

rain rates exceeding 20 mm/day (Supplementary Figure 1d). Mean skill score

[1] for spatially averaged precipitation at a lead time of 72 hours reveals that

the ECMWF model has about 34% additional skill in comparison to observed

LPS climatology. While ECMWF forecasting skills are known to have improved

over the years [2], we don’t see any substantial improvements for precipita-

tion associated with monsoon LPS. For example, the mean skill score only

increased from 0.33 (for the years 2007-2012) to 0.35 (for 2013-2019). How-

ever, it should be noted that both the errors in LPS precipitation and LPS

track position contributes to the biases seen in Supplementary Figure 1, and

more work is needed to delineate them.
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Supplementary Figure 1. Skill of ECMWF precipitation forecasts.
LPS storm-centred composite mean of the (a) observed daily precipitation
from GPM, (b) ECMWF forecasts and (c) bias in the ECMWF forecasts. The
ECMWF forecasts are for a lead time of 72 hours. The bias is computed using
precipitation data from GPM, and the LPS track locations are obtained from
ERA5. Panel (d) compares precipitation forecasts by the ECMWF model with
the GPM data, with precipitation averaged over a 5◦ region around the centre
of the LPS. The plots are for the years 2007–2019.
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Supplementary Figure 2. Population exposure to monsoon LPS. (a)
Spatial distribution and (b) LPS storm-centred composite of population den-
sity. Population density is for the year 2005, which is the mid-point of the
period considered in this study (1990-2019). For the LPS storm-centred com-
posite, all LPS tracks were considered regardless of the occurrence of disasters.
Population density data is obtained from NASA’s Socioeconomic Data and
Applications Center (SEDAC).
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Supplementary Figure 3. Differing track locations of monsoon
depressions and lows. Figure shows the difference in track density between
monsoon depressions and lows. Track density refers to the annual mean num-
ber of depressions or lows seen in each 2◦ × 2◦ box, and is calculated for June
to September of 1990–2019.
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Supplementary Figure 4. ECMWF precipitation forecasts for dis-
asters not associated with LPS. Time series of ECMWF model forecast
daily rainfall at the disaster location for disaster events not associated with
LPS, (a) for forecasts made 24 hours, 72 hours, and 120 hours before each
day in the time series, and (b) for forecasts made 24 hours, 72 hours, and 120
hours before the day of the disaster. Day 0 corresponds to the day the disaster
occurs. The shading encompasses the 25th and 75th percentiles. The plots are
for the years 2007–2019.
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Supplementary Figure 5. Fatalities associated with disaster events.
Average fatalities per disaster event, with disasters stratified by the strength
and number of LPS associated with each disaster. Fatalities from disasters
associated with only a single depression, only a single low, and with multiple
LPS are shown. Means are shown by blue horizontal bars, while error bars
mark the 95% confidence interval for the mean. Only the difference in mean
fatalities for disasters associated with a single low and multiple LPS systems
is statistically significant, evaluated using a t-test at a 95% confidence level.
The plots are for the years 1990–2019.
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