
Exploratory Precipitation Metrics: Spatiotemporal Characteristics, Process-Oriented,

and Phenomena-Based

L. RUBY LEUNG,a WILLIAM R. BOOS,b JENNIFER L. CATTO,c CHARLOTTE A. DEMOTT,d GILL M. MARTIN,e

J. DAVID NEELIN,f TRAVIS A. O’BRIEN,g,h SHAOCHENG XIE,i ZHE FENG,a NICHOLAS P. KLINGAMAN,j,k

YI-HUNG KUO,f ROBERT W. LEE,j,k CRISTIAN MARTINEZ-VILLALOBOS,f,l S. VISHNU,b MATTHEW D. K. PRIESTLEY,c

CHENG TAO,i AND YANG ZHOUh

a Pacific Northwest National Laboratory, Richland, Washington
b University of California, Berkeley, Berkeley, California

c University of Exeter, Exeter, United Kingdom
d Colorado State University, Fort Collins, Colorado

e Met Office, Exeter, United Kingdom
f University of California, Los Angeles, Los Angeles, California

g Indiana University, Bloomington, Indiana
h Lawrence Berkeley National Laboratory, Berkeley, California

i Lawrence Livermore National Laboratory, Livermore, California
j National Centre for Atmospheric Science, Reading, United Kingdom

k University of Reading, Reading, United Kingdom
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ABSTRACT: Precipitation sustains life and supports human activities, making its prediction one of the most societally relevant
challenges in weather and climate modeling. Limitations in modeling precipitation underscore the need for diagnostics and
metrics to evaluate precipitation in simulations and predictions. While routine use of basic metrics is important for documenting
model skill, more sophisticated diagnostics and metrics aimed at connecting model biases to their sources and revealing precipi-
tation characteristics relevant to how model precipitation is used are critical for improving models and their uses. This paper
illustrates examples of exploratory diagnostics and metrics including 1) spatiotemporal characteristics metrics such as diurnal
variability, probability of extremes, duration of dry spells, spectral characteristics, and spatiotemporal coherence of precipitation;
2) process-oriented metrics based on the rainfall–moisture coupling and temperature–water vapor environments of precipita-
tion; and 3) phenomena-based metrics focusing on precipitation associated with weather phenomena including low pressure
systems, mesoscale convective systems, frontal systems, and atmospheric rivers. Together, these diagnostics and metrics
delineate the multifaceted and multiscale nature of precipitation, its relations with the environments, and its generation
mechanisms. The metrics are applied to historical simulations from phases 5 and 6 of the Coupled Model Intercomparison
Project. Models exhibit diverse skill as measured by the suite of metrics, with very few models consistently ranked as top or
bottom performers compared to other models in multiple metrics. Analysis of model skill across metrics and models suggests
possible relationships among subsets of metrics, motivating the need for more systematic analysis to understand model biases
for informing model development.
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1. Introduction

Precipitation is a key component of the water cycle connecting
processes across the atmosphere, land, ocean, and cryosphere
(Trenberth et al. 2007). Through decades of development, the
current generation of climate models uses increasingly sophisti-
cated, physically based subgrid parameterizations of convection

and cloud microphysics to simulate precipitation, although their
horizontal resolutions are still typically much coarser than
needed to explicitly resolve precipitation formation processes.
When, where, how often, and how much precipitation falls has
significant implications for the energy, water, and biogeochemical
cycles of the Earth system. For example, biases in soil moisture
can often be linked to biases in precipitation amount, frequency,
and intensity, which influence the partitioning of precipitation
into evapotranspiration, runoff, and soil moisture storage, with
subsequent impact on surface temperature through evaporative
cooling (Qian et al. 2006). Relatedly, biases in modeling the
surface water and energy balance due to precipitation biases can
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influence clouds, convection, and precipitation through energetic
constraints and land–atmosphere feedbacks. Because of the
myriad Earth system interactions and feedbacks mediated by
precipitation, skillful modeling of precipitation and understanding
and attribution of precipitation biases are scientifically challeng-
ing (Dai 2006; Covey et al. 2016; Chen et al. 2021). As precipita-
tion biases are among the most consequential in limiting the use
of climate models for decision support, there is an urgent need to
improve precipitation modeling across a wide range of spatial
and temporal scales (Tapiador et al. 2019).

Quantifying and understanding model precipitation biases is
an important step toward improving the overall quality of climate
simulations and predictions. Metrics are objective measures for
benchmarking model performance against observations and facil-
itating model intercomparison. Common metrics of precipitation
have focused on aspects such as the spatial distribution of annual
and seasonal mean precipitation, daily precipitation amount,
frequency, and intensity, and the probability density function of
precipitation rate (Deser et al. 2012; Chen and Dai 2018, 2019).
Increasingly, metrics related to extremes such as annual maxi-
mum daily precipitation and consecutive dry days have also
been used to evaluate precipitation characteristics connected
more closely to societal impacts. These metrics have revealed
multiple longstanding precipitation biases in climate models. For
example, climate models tend to produce too frequent light daily
precipitation, but not enough high-intensity daily precipitation
compared to observations (Dai 2006; Stephens et al. 2010; Chen
et al. 2021), while subdaily intensities can vary considerably
between models (e.g., Klingaman et al. 2017). Most global
climate models simulate a spurious intertropical convergence
zone (ITCZ) in the southeastern Pacific and South Atlantic,
resulting in a double-ITCZ bias that is most prominent during
boreal winter (Mechoso et al. 1995; Lin 2007; Mapes and Neale
2011; Hwang and Frierson 2013; Oueslati and Bellon 2013;
Hirota et al. 2014; Tian 2015; Tian and Dong 2020). Erroneous
diurnal timing of precipitation over land is another common
bias, which is most noticeable during boreal summer in regions
such as the central United States featuring nocturnal peaks in
precipitation (Dai et al. 1999; Tang et al. 2021). Precipitation
biases have also been identified in regions with complex terrain
such as the western United States (Mejia et al. 2018) and
Europe (Mehran et al. 2014), in Amazonia (Yin et al. 2013),
and in monsoon regions such as Asia (Sperber et al. 2013).

Although precipitation diagnostics and metrics have been
incorporated in model evaluation and diagnostic packages such
as ESMValTool (Eyring et al. 2020) and the PCMDI Metrics
Package (PMP; Gleckler et al. 2016) used by climate modeling
centers and the climate science community, they focus on limited
aspects of precipitation for benchmarking global climate simula-
tions. At the same time, over the past few years new precipitation
diagnostics and metrics have been developed to deconvolve and
better understand model precipitation biases. For example, Ma
et al. (2013) proposed a set of metrics and diagnostics to evaluate
and diagnose tropical precipitation biases and associated moist
processes in climate models. Their proposed diagnostics include
stratiform fraction of precipitation, probability density func-
tion of daily precipitation intensity, composites of column
water vapor, column relative humidity, temperature, and specific

humidity profiles as a function of precipitation intensity, and
composites of stratiform rainfall fraction as a function of column
relative humidity. Klingaman et al. (2017) developed a set of
diagnostics and metrics for analyzing precipitation intensity and
coherence on a range of time and space scales.

This study represents a collaborative effort as an outgrowth
of a workshop on “Benchmarking Simulated Precipitation in
Earth System Models” (Pendergrass et al. 2020) to develop
more advanced precipitation metrics and demonstrate their use
in benchmarking diverse aspects of precipitation from climate
simulations. Three types of precipitation diagnostics and metrics
are presented: 1) spatiotemporal characteristics metrics, such as
diurnal variability, probability of extremes, duration of dry
spells, spectral characteristics, and spatiotemporal coherence of
precipitation; 2) process-oriented metrics, based on the rainfall–
moisture coupling and temperature–water vapor environments
of precipitation; and 3) phenomena-based metrics, focusing on
precipitation associated with weather phenomena such as low
pressure systems, mesoscale convective systems, frontal systems,
and atmospheric rivers. These diagnostics and metrics take
advantage of analysis building on advances in understanding the
thermodynamic environments of precipitation (e.g., Bretherton
et al. 2004; Neelin et al. 2009; Kuo et al. 2018; Chen et al. 2020)
and their role in modes of variability (e.g., Wolding et al. 2020),
and in tracking weather features such as atmospheric rivers (e.g.,
Shields et al. 2018).

While examples of the above metrics have been reported in
recent literature (e.g., Klingaman et al. 2017; Ahmed et al. 2020;
Feng et al. 2021a), they are deemed exploratory partly because
they have not been widely used or implemented in standard
metrics and diagnostics packages and partly because they allow
deeper exploration of precipitation characteristics and associ-
ated processes. Some of these diagnostics and metrics require
variables besides precipitation to evaluate relationships with
environmental conditions, or to track weather features, so their
data requirements go beyond the baseline precipitation metrics
already implemented in widely used metrics and diagnostics
packages (Pendergrass et al. 2020). Furthermore, additional
research may be needed on interpretations of results from use
of these metrics, to standardize their use, or to address technical
or computational issues. Here, we apply the exploratory metrics
to a common set of climate simulations from phases 5 (CMIP5;
Taylor et al. 2012) and 6 (CMIP6; Eyring et al. 2016) of the
Coupled Model Intercomparison Project. While our aim is not
to provide an exhaustive study of the ability of these models to
represent precipitation, we illustrate how such diagnostics and
metrics may be used to evaluate broader aspects of precipita-
tion in climate simulations and to explore insights that may be
gained through comparative analysis of multiple metrics. With
increasing model resolutions to better resolve weather and
large-scale environments (e.g., Haarsma et al. 2016), the explor-
atory diagnostics and metrics may be even more relevant not
only for benchmarking models but also for understanding the
causes of model precipitation biases. They also provide useful
information to support the growing and more diverse uses of
precipitation from climate models and improve communications
of climate model performance by connecting precipitation to
commonly understood weather phenomena. A collection of
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such exploratory diagnostics and metrics is a valuable addition
to the existing precipitation diagnostics and metrics packages
that are used in the community.

We briefly summarize the observational data, climate model
output, and the feature tracking methods in section 2. Key results
are presented in sections 3, 4, and 5 for the spatiotemporal
characteristics, process-oriented metrics, and phenomena-based
metrics, respectively. Each area is presented as a module describ-
ing the diagnostics and metrics and the results of applying them
to climate model outputs summarized in a multipanel figure. We
conclude with discussion and summary in section 6.

2. Data and feature tracking methods

a. Observational data and climate model outputs

Several observational precipitation data products are used
for benchmarking precipitation from climate simulations.
These include 1) the Tropical Rainfall Measurement Mission
(TRMM) Multisatellite Precipitation Analysis (TMPA-RT)
(3B42; Huffman et al. 2007); 2) the Remote Sensing Systems
TRMM Microwave Imager (TMI) Daily Environmental Suite
on 0.258 grid, version 7.1 (Wentz et al. 2015); 3) the TRMM
Precipitation Radar (PR) Rainfall Rate and Profile L2 1.5 h
V7 (2A25; TRMM 2011); 4) the monthly and daily Global
Precipitation Climatology Project (GPCP) V3 combined precipi-
tation dataset (Huffman et al. 2020); 5) CMORPH bias-corrected
integrated satellite precipitation estimates (Joyce and Xie 2011);
6) Precipitation Estimation from Remotely Sensed Information
(PERSIANN) (Ashouri et al. 2015); and 7) Global Precipitation
Measurement (GPM) Multi-satellitE Retrievals (IMERG)
precipitation data V06B (Tan et al. 2019). They represent a
diverse set of precipitation data derived from satellite- and
ground-based remote sensing retrievals. In addition, ground-
based precipitation observations at the DOE Atmospheric

Radiation Measurement (ARM) Program’s Southern Great
Plains (SGP) and Manacapuru (MAO) sites are also used. The
ARM data used in this study are from the ARM best estimate
(ARMBE; Xie et al. 2010) data products and the ARM long-
term continuous variational analysis (VARANAL; Xie et al.
2004). At these ARM sites, the available surface rain gauge
measurements and/or radar retrievals provide additional infor-
mation to validate satellite-based precipitation products. Table 1
summarizes the spatial and temporal resolution and domain
coverage of these datasets. While the highest spatial resolution
available for the dataset is given in Table 1, coarse-graining of
the data for comparison to models is described with each metric.
As different exploratory diagnostics and metrics have different
requirements for precipitation data, we do not standardize
the use of observational precipitation data in calculating the
metrics, but recognize the need to address uncertainty in observed
precipitation products in use and interpretation of metrics.

Besides precipitation data, several global reanalysis prod-
ucts are used to provide gridded data of the atmospheric envi-
ronments needed for calculation of some process-oriented
metrics and identification and tracking of weather features for
the phenomena-based metrics: 1) ERA-Interim (Dee et al.
2011), 2) ERA5 (Hersbach et al. 2020; Hoffmann et al. 2019),
3) MERRA-2 (Gelaro et al. 2017), and 4) CFSR (Saha et al.
2010). Last, the NASA Global Merged IR V1 infrared bright-
ness temperature (Tb) data (Janowiak et al. 2017) are also used
to track mesoscale convective systems (MCSs). The spatial and
temporal resolutions of the reanalysis products and Tb data are
also summarized in Table 1.

The exploratory metrics are applied to benchmark precipita-
tion from the Coupled Model Intercomparison Project phase 5
(CMIP5; Taylor et al. 2012) and phase 6 (CMIP6; Eyring et al.
2016), with typical horizontal resolution of ∼18. Two of the met-
rics on low pressure systems and mesoscale convective systems

TABLE 1. Observational and reanalysis data for benchmarking models. Variables P, Q, U, V, T, CVW, and IR Tb are precipitation, specific
humidity, zonal wind, meridional wind, temperature, column water vapor, and infrared brightness temperature, respectively.

Variables Temporal resolution
Max spatial
resolution Period of coverage Domain of coverage

GPCP P Monthly 0.258 3 0.258 1979–2020 Global
GPCP 1DD P Daily 18 1996–present Global
CMORPH P 30 min 8 km 1998–2017 608S–608N
PERSIANN-CDR P Monthly 0.258 3 0.258 1983–2017 608S–608N
TRMM 3B42 P 3-hourly 0.258 3 0.258 1998–2019 508S–508N
TRMM-TMI CWV Twice-daily snapshot 0.258 3 0.258 2002–14 408S–408N
TRMM PR 2A25 P Twice-daily snapshot 5 km 2002–14 408S–408N
GPM-IMERG P Hourly 0.18 3 0.18 2001–20 608S–608N
ARMBE P Hourly Single point SGP: 1993–2018 Single point

MAO: 2014/15
VARANAL P SGP: hourly 0.58 3 0.58 SGP: 2004–18 SGP: 38 3 38

MAO: 3-hourly MAO: 2014/15 MAO: 28 3 28
NASA Global

Merged IR V1
IR Tb Hourly Raw data at 4 km

but coarsened to
0.18 3 0.18

2000–19 608S–608N

ERA-Interim Q, U, V, T 3-hourly 80 km 1979–2019 Global
ERA5 Q, U, V, T Hourly 30 km 1979–2019 Global
MERRA-2 Q, U, V, T 3-hourly 50 km 1980–2019 Global
CFSR Q 6-hourly 38 km 1979–2019 Global
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are applied to precipitation from several high-resolution simula-
tions from HighResMIP (Haarsma et al. 2016) as these weather
features are better defined and more reasonably resolved at
higher resolution. In HighResMIP, high-resolution simulations
have nominal resolutions ranging from 0.258 to 0.58, with their
low-resolution counterparts ranging from 1.08 to 1.48. Table 2
summarizes the variables and their temporal frequency used to
calculate the various metrics.

b. Feature identification and tracking methods

The phenomena-based metrics require identification and
tracking of weather features in observations and simulated

precipitation. A brief description of methods used to track low
pressure systems (LPS), mesoscale convective systems (MCS),
frontal systems (FRT), and atmospheric rivers (AR) are pro-
vided below while more detailed descriptions are provided in
the cited references.

1) LOW PRESSURE SYSTEMS

The TempestExtremes feature tracking algorithm (Ullrich and
Zarzycki 2017) is used to track tropical low pressure systems by
identifying extrema in candidate tracking variables. A systematic
assessment of multiple candidate variables, hundreds of quantita-
tive tracking criteria, and several vertical levels led to selection of

TABLE 2. Variables and their temporal frequency used to calculate various precipitation metrics and the objectives of the metrics.

Metrics Variables and temporal frequency Objectives

Diurnal cycle of precipitation 3-hourly precipitation Intercompare a large number of models
with observations and with each other
on the diurnal cycle of precipitation
over different climate regimes

Extremes of daily precipitation and
duration of dry spells

Daily precipitation Use characteristic scales governing
probabilities in the large-event regime
for dry and wet precipitation extremes
to capture the performance of models

Spectral analysis of precipitation 3-hourly and daily precipitation
sampled over ∼20 years of data, by
season and annual.

Examine the ability of models to
represent the range of precipitation
intensities typically occurring at any
location, on 3-hourly and daily time
scales

Coherence analysis of precipitation 3-hourly and daily precipitation Measure and compare the spatial and
temporal scales of precipitation across
observations and models

MJO east–west power ratio and
Maritime Continent propagation

Daily precipitation Evaluate the relationship between
precipitation spatial coherence and
MJO propagation across the Maritime
Continent in models

Rainfall–moisture coupling Daily precipitation and vertically
integrated water vapor and
saturation water vapor

Evaluate the coupling of tropical rainfall
and moisture in models and how this
coupling affects MJO simulation

Temperature–water vapor
environment

3-hourly/hourly vertically integrated
saturation humidity and snapshots
of column water vapor (CWV) and
precipitation

Quantify the thermodynamic
environment that produces most
precipitation at subdaily time scales

Low pressure systems 6-hourly 850-hPa values of zonal
wind, meridional wind,
temperature, and specific humidity;
6-hourly precipitation

Track LPS in observations and
simulations and compare their
depiction of number, structure, and
rainfall

Mesoscale convective systems Hourly outgoing longwave radiation
and precipitation

Track MCSs in observations and
simulations and compare their
depiction of MCS number and rainfall

Frontal precipitation 6-hourly 850-hPa zonal and
meridional wind components,
specific humidity, temperature, and
daily precipitation

Use fronts as a precipitation regime to
decompose precipitation errors into
frontal and nonfrontal, and to quantify
the representation of the dynamical
impact of fronts on precipitation
intensity

Atmospheric rivers 3- or 6-hourly zonal and meridional
wind components, specific humidity,
surface pressure, and precipitation

Assess whether models simulate AR-
related precipitation in the correct
locations and with enough contrast
between regions with high AR
precipitation and low AR precipitation
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the streamfunction of the 850-hPa horizontal wind (Vishnu
et al. 2020) as the optimal tracking variable. Streamfunction
minima were used to identify lower-tropospheric cyclonic vor-
tices within 358 of the equator in the ERA5 reanalysis, four
HighResMIP models, and the 0.258-resolution E3SM model
(Caldwell et al. 2019). The streamfunction was calculated from
the horizontal wind for each dataset, with any wind velocities
that were extrapolated below Earth’s surface (e.g., in ERA5)
set to zero before solving the Poisson problem for the stream-
function (Vishnu et al. 2020). The resulting track dataset for
ERA5, together with tracks for four other reanalyses, are
available in a Zenodo repository (https://doi.org/10.5281/
zenodo.3890646).

2) MESOSCALE CONVECTIVE SYSTEMS

The FLEXTRKR algorithm is used to track MCSs in observa-
tions and model simulations. An MCS is defined as a convective
system with 1) cold cloud shield (CCS). 43 104 km2 containing
a precipitation feature (PF) with major axis length. 100 km and
2) PF area, mean rain rate, rain rate skewness, and heavy rain
volume ratio larger than corresponding lifetime dependent
thresholds, with 3) both conditions 1 and 2 lasting continuously
for longer than 4 h. As in Feng et al. (2021b), CCS is tracked
using geostationary satellite Tb data and defined using a thresh-
old of Tb , 241 K. For model simulations, Tb is derived based
on simulated outgoing longwave radiation following the
empirical formulation provided by Yang and Slingo (2001). PF
is tracked using the IMERG hourly precipitation data and PFs
are defined as contiguous areas within the CCS with hourly
rain rate. 2 mm h21.

3) FRONTAL PRECIPITATION

Fronts are identified using an automated method applied to
6-hourly gridded data at 2.58 resolution (Berry et al. 2011,
Catto et al. 2015). This method calculates a thermal front
parameter (TFP) as function of a thermal parameter:

TFP uw( ) � 2$ $uw| | · $uw
$uw| |

( )
:

While many variables can be used to calculate the thermal front
parameter (Thomas and Schultz 2019), we have used the wet
bulb potential temperature (uw) as in Hewson (1998). After
calculating the TFP, the field is masked where this is above a
fixed negative threshold. Frontal points are then defined as the
locations where the gradient of the TFP is equal to zero. These
points are joined into contiguous lines and regridded as binary
objects with an area of influence of plus and minus one grid box.
Fronts can be separated into warm, cold, and quasi-stationary
fronts, but here we have maintained simplicity by considering all
fronts together.

4) ATMOSPHERIC RIVERS

With few exceptions, previous studies have utilized only a
single AR detection tool (ARDT) in each study, whereas
over 30 ARDTs currently exist (Shields et al. 2018; Rutz et al.
2019). Recent results from the Atmospheric River Tracking

Method Intercomparison Project (ARTMIP) have demon-
strated that different ARDTs can produce different scientific
results, which suggests that multiple ARDTs may need to be
used when evaluating climate models in order to gain a com-
plete picture of model skill in simulating ARs (O’Brien et al.
2020b). ARs are detected globally using six independently
developed ARDTs, which we refer to by the following code
names: ARCONNECT v2 (Sellars et al. 2017), GuanWaliser
v2 (Guan et al. 2018), Lora v2 (Skinner et al. 2020), Mund-
henk v3 (Mundhenk et al. 2016), TECA BARD v1.0 (O’Brien
et al. 2020b), and Tempest LR (McClenny et al. (2020);
O’Brien et al. 2022). These ARDTs were run on output from
the MERRA-2 reanalysis as part of the ARTMIP Tier 1
experiment (Shields et al. 2018) and on output from the
CMIP5 and CMIP6 multimodel ensembles as part of the
ARTMIP Tier 2 CMIP5/6 experiment (O’Brien et al. 2022).
The methods use a variety of heuristic rules to objectively
identify atmospheric rivers from integrated vapor transport
(IVT; the vertical integral of horizontal moisture transport)
and/or integrated water content. For example, the widely
used GuanWaliser v2 algorithm identifies ARs as
continuous regions of integrated vapor transport exceeding
the climatological 85th percentile, if the continuous regions meet
specific geometric thresholds indicative of long and narrow
regions of intense poleward moisture transport. We employ mul-
tiple ARDTs because recent literature indicates that different
ARDTs may, in some instances, lead to qualitatively different
answers to the same question (O’Brien et al. 2020a,b; Zhou et al.
2021).

3. Spatiotemporal characteristics metrics

Precipitation variability at different spatial and temporal
scales is associated with specific processes such as convection
driven by diurnal solar heating at the land surface, seasonal
moisture convergence related to monsoon systems, disturbances
related to convectively coupled equatorial waves, and large-
scale atmosphere–ocean interactions. Diagnostics and metrics
of spatiotemporal precipitation characteristics are therefore use-
ful for relating model biases to specific mechanisms of precipita-
tion generation at relevant ranges of spatiotemporal scales.
These metrics are also useful for informing use of climate model
precipitation data at appropriate spatiotemporal scales. Four
metrics to benchmark the diurnal cycle of precipitation, daily
precipitation and duration of dry spells, fractional contribution
to the total mean rainfall from different intensities, and spatial
and temporal coherence of precipitation are discussed in this
section.

a. Diurnal cycle of precipitation

The Fourier analysis has been widely applied to quantifying
the diurnal cycle of precipitation in both observations and
GCMs. However, the model-simulated rainfall is often quite
noisy and therefore is poorly fit by low-order Fourier harmonics
at single grid points. Covey et al. (2016) proposed a summary
metric which illustrates the model-simulated Fourier amplitude
and phase, averaged separately over all land and all ocean
areas, in a single two-dimensional map. This metric enables
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intercomparison of climate models with observations and with
each other over different climate regimes, but it becomes prob-
lematic when the number of models increases. Here we extend
the procedure of Covey et al. (2016) and propose a metric that
clearly displays the Fourier amplitude and phase of each indi-
vidual model from a large number of groups in one bar plot
(C. Tao et al. 2021, unpublished manuscript).

Figure 1a shows an example of the composite diurnal har-
monic amplitude and phase (in LST) of summertime precipi-
tation from 24 CMIP6 models versus observations over land.
To generate the figure, we first produce a composite diurnal
time series of precipitation, averaged over many years, for
each grid point. We then apply Fourier analysis on the com-
posite diurnal cycle of precipitation and focus on the first har-
monic component, following Dai (2001). Here, the diurnal
harmonic amplitude and phase are averaged over all land
points between 508S and 508N using a vector averaging
method, which automatically down weights the areas with a
weak diurnal cycle (Covey and Gleckler 2014; Covey et al.
2016). Model precipitation is evaluated for the period of
1996–2005. Previous studies (e.g., Dai et al. 2007) have indi-
cated that a stable diurnal cycle can be obtained with just a
few years of data. As shown, the two satellite-based observa-
tions (TRMM 3B42 v7 and GPM-IMERG) agree quite well
with each other in terms of both diurnal amplitude and phase.
Over land, the major deficiency of the models is the too early
diurnal precipitation peak, consistent with previous studies
(e.g., Dai 2006; Xie et al. 2019). The majority of the models

show a diurnal harmonic phase peaking between 1200 and
1500 LST instead of early evening from the observations. The
observed early morning diurnal harmonic phase over the
ocean is generally captured by most of the CMIP6 models
(Fig. 1b) while the corresponding diurnal harmonic amplitude
is somewhat underestimated in all 24 CMIP6 models. To high-
light the models with the best performance, Figs. 1c and 1d
show the scatterplot of absolute model bias relative to TRMM
observations in diurnal harmonic phase versus amplitude over
land and over ocean, respectively. Over ocean, interestingly,
models that perform better in the diurnal cycle phase tend
to perform worse in amplitude (Fig. 1d). The relationship
between model biases in precipitation diurnal phase and
amplitude over land is less significant than that over ocean
but there is a tendency for models with smaller bias in phase
to have correspondingly smaller bias in amplitude (Fig. 1c).
Particularly, EC-Earth3, EC-Earth3-Veg, and EC-Earth3-
Veg-LR compare the best to the observations over land in
terms of both diurnal amplitude and phase. Similar results
are found by interpolating the data to a common grid (not
shown). Generally, the impact of model resolution on the
simulated diurnal cycle of precipitation is minimal.

The metric diagram can also be easily computed for smaller
scales and at different locations where rich ground-based
high-frequency observations are available. Figures 1e and 1f
compare the simulated diurnal harmonic amplitude and phase
to observations at the two ARM sites (SGP and MAO) where
precipitation shows distinct diurnal variability with SGP

FIG. 1. (a) Bar plot of the composite mean diurnal harmonic amplitude (y axis) and phase in LST (colors) of summertime precipitation
averaged over land. (b) As in (a), but over ocean. (c) Scatterplot of absolute bias in diurnal harmonic phase vs amplitude over land.
(d) As in (c), but over ocean. (e),(f) As in (a), but for ARM SGP and MAO sites, respectively. Here, summertime precipitation refers to
July for the Northern Hemisphere and January for the Southern Hemisphere. Model precipitation for 24 CMIP6 historical simulations is
examined for the years 1996–2005.
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featuring a nocturnal peak whereas MAO has an afternoon
peak. Despite some discrepancies, the satellite-based products
agree fairly well with the ground-based rain gauge and/or
radar measurements in general. As shown in Fig. 1e, there is a
large model spread in both diurnal amplitude and phase at
SGP, with most of the models (all but two) failing to capture
the observed nocturnal peak around midnight in which half of
the models actually show a diurnal precipitation peak in the
afternoon. CNRM-CM6-1-HR and FGOALS-g3 simulate the
diurnal phase much closer to that observed but both signifi-
cantly underestimate the diurnal harmonic amplitude. The
majority of models show a diurnal precipitation peak around
noon at MAO, a few hours earlier than the observed (Fig. 1f).
In general, the CMIP6 models show diverse results simulating
the diurnal amplitude with some overestimating the observed
value and some underestimating it, but they often show consis-
tent biases in simulating the diurnal phase. Almost all the mod-
els peak too early during the day and miss the nocturnal diurnal
peak at certain regions.

To summarize, the metric developed here provides a quick
comparison with observations and among models, and reason-
ably summarizes the systematic model errors in reproducing the
diurnal cycle of precipitation over both large areas and single
point locations. Particularly, by displaying the diurnal harmonic
amplitude and phase from the Fourier analysis in one bar plot,
this metric enables the evaluations with a focus on individual
model performance from a large number of models.

b. Extremes: Daily precipitation and duration of
dry spells

Despite being seemingly contrasting variables, daily precipita-
tion and the duration of dry spells share many features in the
shape of their probability distributions. The probability density
functions (PDFs) of both quantities are characterized by a
power-law range, where the probability decreases slowly with
each order of magnitude increase in precipitation rate or dura-
tion of dry spells, up to a cutoff scale (denoted PL for daily pre-
cipitation and tL for the duration of dry spells; see Figs. 2a,b)
where the probability decreases roughly exponentially (Figs.
2a,b), ultimately controlling the size of extreme percentiles (Mar-
tinez-Villalobos and Neelin 2018, 2021; Chang et al. 2020). These
quantities have connections with the moisture budget, with PL

(and hence also extreme percentiles) scaling with the amplitude
of moisture convergence fluctuations within precipitating events
(Neelin et al. 2017; Martinez-Villalobos and Neelin 2019), and tL
scaling with the balance between moisture convergence fluctua-
tions at dry times and the mean moisture source tendency (Pier-
rehumbert et al. 2007; Stechmann and Neelin 2014).

Recently, Martinez-Villalobos and Neelin (2021) showed that
the shape of the large daily precipitation probability tail and the
spatial pattern of the cutoff scale are well simulated by GCMs
but there is a bias in the magnitude of PL compared to observa-
tional datasets (see also Fig. 2a). This suggests that two metrics
can succinctly summarize the general model behavior of daily
precipitation and dry-spell duration extremes. The first one is the
spatial correlation coefficient over 508S–508N (the spatial extent
of TRMM-3B42; see Table 1) between model simulated PL and

tL patterns (see Figs. 2c,d for their CMIP6 multimodel mean)
and their observational counterparts (TRMM-3B42 in this case).
The second metric is the scaling factor, defined as the model area
weighted mean PL or tL divided by the TRMM-3B42 observa-
tional estimate of the same quantity. The first metric tests
whether extremes are well simulated spatially regardless of mag-
nitude (values can range between 21 and 1, with 1 denoting a
model that simulates the spatial pattern of TRMM-3B42), and
the second tests the overall magnitude of the pattern (values can
range between 0 and infinity, with 1 being the best). To gauge
model behavior, we also calculate the same metrics comparing
GPCP versus TRMM-3B42 as a measure of observational uncer-
tainty. The differences between observational precipitation
products can be large, thus, model results may be sensitive to
the choice of target observational product. This sensitivity is
discussed in section 4 and in Fig. S2 in the online supplemental
material. We note the caveat that part of the differences
between models and observational products noted below
may be the result of sampling different internal variability
realizations (Deser et al. 2012) due to the relatively short
span in which precipitation observational products have
been available. However, different realizations from models
of the same family (e.g., GFDL models, CNRM models)
tend to perform similarly, which suggest that sampling vari-
ability has only a minor effect on the results. More details
on these metrics and methodology are given in the online
supplemental material.

Figures 2e and 2f show the results for 35 CMIP6 models
and for the multimodel ensemble mean (MME) for PL and
tL respectively. We first find that there is a substantial obser-
vational uncertainty for PL. The overall magnitude of PL in
GPCP is about 70% (scaling factor of 0.68) of TRMM-3B42
magnitude and the correlation coefficient of the patterns is
0.81. There are several models that are closer to TRMM-
3B42 than the observational uncertainty. Among these we
highlight HadGEM3-GC31-MM as the model with the clos-
est PL spatial pattern (r = 0.89) and GFDL-ESM4 as the
model with the closest overall magnitude to TRMM-3B42
(scaling factor = 0.98). The MME benefits from the good
performance of the best models in the spatial structure and
averages the overall magnitude of PL in the different mod-
els. This results in a multimodel mean that is closer than
GPCP to TRMM-3B42 in both PL spatial pattern and
magnitude.

The model performance on the duration of dry spells is sim-
ilarly encouraging. While all individual models and the MME
simulate longer duration of dry spells than both TRMM-3B42
and GPCP (even after the models wet-day biases are greatly
reduced; see the online supplemental material), the tL pattern
correlation in almost all models is comparable, although
reduced, with the pattern correlation between TRMM-3B42
and GPCP. Even though the magnitude of PL and tL (hence
also extreme percentiles) differs from TRMM-3B42 in almost
all models, the fact that the patterns are well correlated helps
boost confidence in model projections of relative (i.e., per-
cent) changes of daily precipitation and dry-spell duration
extremes.
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c. Spectral analysis

Following the method of Klingaman et al. (2017) implemented
in Analyzing Scales of Precipitation (ASoP) version 1.0, we
calculate the fractional contribution to the total mean rainfall

from different intensities, at 3-h and daily time scales, sorted
into 100 bins of varying width ranging from 0.005 to 2360 mm
day21. This reveals the relative importance of precipitation
events in a given intensity bin to the total precipitation. The

FIG. 2. Observational (GPCP and TRMM-3B42) and selected models: (a) daily precipitation PDFs in the eastern
United States (258–488N, 2578–2948E) and (b) dry spell durations PDFs in the western United States (308–488N,
2368–2578E). In (a) and (b) the cutoff scales are shown by a large circle (for models) or large squares (for observational
datasets). Note that the larger or longer the cutoff scale, the more extreme is the large event tail. (c). Multimodel
mean (out of 35 models) of the daily precipitation cutoff-scale PL pattern. (d). Multimodel mean of the dry spell dura-
tion cutoff-scale tL pattern (with model-dependent dry-day precipitation threshold). (e). Scatterplot of the PL scaling
factor and pattern correlation coefficient against TRMM-3B42 for individual models [numbers; legend across (e) and
(f) gives corresponding acronyms], multimodel mean (green dot), GPCP (orange dot), and TRMM-3B42 [blue dot at
(1, 1) by definition. (f). As in (e), but for tL scaling factor and pattern correlation coefficient.
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calculation is performed at each grid box, using a horizontal
resolution that is sufficiently coarse for at least some spatial
averaging to be carried out for all of the models and the obser-
vations. To avoid removing important spatial detail, we limit
this resolution to 28 3 28, thereby requiring us to omit models
whose resolution is similar to or coarser than this. Calculations
are performed for the whole year (ANN) and for each season,
over 25 years (1990–2014) of CMIP6 historical simulations.

To evaluate the models, we use a similarity index (Perkins
et al. 2007) to compare the fractional histograms from each
model with those obtained from 19 years of GPM-IMERG
observations (2001–19) at each grid point between 608S and
608N. This measures the overlap between the model and
observed histograms, with values closer to 1.0 indicating that
the histograms match better and a value of 0.0 indicating they
are entirely separated. Metrics are the spatial root-mean-
square of these indices over selected regions. Any region
could be chosen for metric evaluation; here we have used six
regions: global (608S–608N), tropics (158S–158N), land-only
(308S–308N), sea-only (308S–308N), Northern Hemisphere

(NH) midlatitudes (308–608N), and Southern Hemisphere
(SH) midlatitudes (308–608S).

Figure 3a shows an example map of the indices from 3-h
rainfall data from HadGEM3-GC31-MM versus GPM-IMERG.
This suggests that performance is better over land than ocean,
and over the midlatitudes than the tropics. Figure 3b shows the
overall metric summary information for the 3-h time scale. This
confirms that the pattern seen for HadGEM3-GC31-MM is
similar for the other CMIP6 models and is consistent through the
seasons. The stars indicate comparison of GPM-IMERG with
other observation datasets, providing a measure of uncertainty.
The metrics from the models nearly all lie outside this uncer-
tainty range. Figure 3c provides additional information about the
model–observation differences: the models are generally biased
toward smaller rainfall accumulations, although there are a few
models for which there is a greater than observed contribution
from the largest rainfall accumulations. We find similar results
for daily accumulations.

The metrics are a useful guide to the overall model perfor-
mance, but the fact that the histograms are analyzed at each
grid point, and that the calculations can be performed on any

FIG. 3. (a) Example map of index from 3-h rainfall data from HadGEM3-GC31-MM vs GPM; (b) Summary metrics
for different regions from time series of 3-h rainfall data from 23 CMIP6 models compared with GPM-IMERG obser-
vations. Boxes show the interquartile range while whiskers indicate the full range of model indices. Red line shows the
median. Filled stars indicate other observational datasets (TRMM and CMORPH). (c),(d) Histograms of 3-h rainfall
data from 23 CMIP6 models and 3 observational datasets for global (608S–608N) and land-only (308S–308N) domains,
respectively. All model and observation data were averaged to a 28 3 28 grid, using conservative area-weighted averag-
ing, before analysis.
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temporal or spatial scale, means there is much more informa-
tion available from these diagnostics to users and model devel-
opers that could be used to understand model errors on a
range of time scales (see, e.g., Martin et al. 2017). There is also
the potential for subsampling of rainfall associated with orga-
nized systems or phenomena (such as tropical cyclones, fronts,
MJO) prior to the histogram analysis, which could increase
our understanding of these systems as well as providing infor-
mation on model errors. The metrics could also be used to
examine the influence of model resolution, ocean–atmosphere
coupling, and the inclusion of Earth system processes on the
spread of rainfall intensities.

d. Coherence analysis

The “Analyzing Scales of Precipitation” (ASoP) diagnostics
(Klingaman et al. 2017) can measure, and compare, the spatial
and temporal scales of precipitation across observations and
GCMs. The “ASoP Coherence” package was designed to
produce a single diagnostic or metric for a chosen region. Here,
we extend the package to operate on gridded data. We measure
spatial and temporal coherence in 3-hourly and daily precipita-
tion in GPM-IMERG observations and CMIP6 historical simu-
lations. We perform these calculations on a common 28 3 28
grid, a horizontal resolution that is sufficiently coarse for at least
some spatial averaging to be carried out for all of the models
and the observations while also avoiding removing important
spatial detail. This requires us to omit models whose resolution
is similar to or coarser than this. The calculations are performed
between 608S and 608N, neglecting any point with annual-mean
rainfall, 1 mm day21 and, in the remaining points, any months
in the dry season, defined as months that contribute, in the
mean, less than 1/24 of the annual precipitation.

Figures 4a–c use 3-hourly data to show the temporal scale,
defined as the first lag at which the temporal autocorrelation is
,0.2, for the CMIP6 historical multimodel mean (Fig. 4a),
GPM-IMERG (Fig. 4b), and the multimodel mean bias (Fig. 4c).
Throughout much of the tropical and subtropical oceanic regions,
the CMIP6 multimodel mean precipitation is too persistent,
highlighting an area for model improvement. Figures 4d–f use
daily-mean data to show the spatial scale, which is computed
from the temporal correlation of the precipitation between each
grid point and its surrounding grid points, using intervals of radii
given in the color bar beneath the panel. The scale is defined as
the first search radius at which the spatial correlation is ,0.2.
Daily precipitation spatial scales are larger in the CMIP6 multi-
model mean (Fig. 4d) than in GPM (Fig. 4e), particularly in the
eastern equatorial Pacific and Atlantic Oceans, and in near-equa-
torial regions of the Indian Ocean, as well as much of the sub-
tropical oceans (Fig. 4f). Combined with the temporal scale
results above, this suggests that CMIP6 models produce precipi-
tation features that are too large and that last too long, particu-
larly in the tropical oceans.

Klingaman et al. (2017) also defines spatial and temporal
coherence metrics. The spatial metric is derived from the like-
lihood of coincidence of upper-quartile and lower-quartile
precipitation at neighboring grid points; the temporal metric
is derived from the likelihood of consecutive time steps of the

upper quartile and lower quartile at the same grid point.
Quartiles are computed for each grid point and each month
of the seasonal cycle. For the temporal coherence metric, we
show the aggregated grid point metrics (computed 608S–608N)
as Taylor diagrams for global land (Fig. 4g), ocean (Fig. 4h),
and all points (Fig. 4i). The CMIP6 models show higher cen-
tered RMS difference and lower correlations, against GPM-
IMERG, for land points than for ocean points, indicating that
persistence of land precipitation is another area for model
improvement. The spatial standard deviation values of the
coherence metrics shown in the Taylor diagrams can provide
further insights for model improvements: models that have a
smaller standard deviation than GPM-IMERG are typically too
persistent across all grid points, as the mean bias is positive for
nearly all models (not shown), while models that have a greater
standard deviation are typically too persistent in some regions
and too intermittent in others. These standard deviations show
stronger negative biases over land than over ocean, indicating
that models show little spatial variability in temporal coherence
over land and hence cannot distinguish regions dominated by
longer-lived rain-bearing systems from regions dominated by
shorter-lived systems.

Next, we demonstrate the ability to compare the spatial scale
of precipitation (now restricted to the tropical Indian Ocean:
108S–108N, 608–908E; using daily data; determined as correlations
at a distance of 800 km) with two metrics of the MJO in CMIP6
models, two satellite observation datasets, and ERA5 (Fig. 4j).
The satellite observations and ERA5 have an average precipita-
tion spatial coherence of 0.06–0.09, and the CMIP6 models cover
the range 20.03 to 10.26. CMIP6 models have a relatively close
relationship between precipitation spatial coherence and the
MJO Maritime Continent propagation metric (Ahn et al. 2020;
R2 = 0.489). This suggests that those climate models with a higher
spatial coherence of daily precipitation propagate the MJO more
robustly east over the Maritime Continent. The relationship is
weaker (R2 = 0.114) between precipitation spatial coherence and
the MJO east/west power ratio, which measures MJO spatiotem-
poral structure (e.g., Sperber and Kim 2012; Ahn et al. 2017).
There is no relationship between precipitation temporal scale
and either MJO metric. Comparisons between spatiotemporal
characteristics metrics and process- or phenomena-based metrics
may be able to lead to greater insights and understanding of the
origins of biases and model errors.

4. Process-oriented metrics

Although metrics of spatiotemporal characteristics are sug-
gestive of the processes contributing to precipitation biases at
different spatial and temporal scales, they do not by themselves
represent processes related to precipitation. Here, process-
oriented metrics are used to reveal relationships between precipi-
tation and the thermodynamic environments, which provide
important information on the ability of models to reproduce the
observed relationships and the potential contributions of large-
scale biases in the atmospheric environments to the precipitation
biases. Here, we discuss two metrics highlighting the coupling of
precipitation with the thermodynamic environments.
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FIG. 4. (top) Temporal scale (h; defined as the first lag at which the autocorrelation of 3-h precipitation is ,0.2; within 608S–608N)
(a) the CMIP6 historical multimodel mean, (b) GPM-IMERG, and (c) the multimodel mean bias. (second row) Spatial scale (km; defined
as the first distance at which the correlation between a grid point and neighboring points within a distance bin is, 0.2, with bin edges given
as divisions of the color bar) for (d) the CMIP6 historical multimodel mean, (e) GPM-IMERG, and (f) the multimodel mean bias. In
(a)–(f), white shading denotes grid points with annual-mean precipitation , 1 mm day21, which are not included in the analysis. (third
row) Summary Taylor diagrams of temporal coherence, using 3-hourly data, over (g) land-only, (h) ocean-only, and (i) all grid points,
within 608S–608N, for the CMIP6 models vs GPM-IMERG. (j) Tropical Indian Ocean (108S–108N, 608–908E) precipitation spatial correla-
tion at 800 km (43 the grid scale) vs MJOMaritime Continent propagation metric (Ahn et al. 2020; left-side axis; red) and MJO east–west
power ratio (e.g., Sperber and Kim 2012, Ahn et al. 2017; right-side axis; blue) for two satellite observational datasets (TRMM and GPM-
IMERG), ERA5 over three different periods, and the CMIP6 models. Quoted R2 values and lines of best fit are for CMIP6 models only.
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a. Rainfall–moisture coupling

Latent heating from tropical rainfall formation forces large-
scale circulation anomalies that affect weather patterns glob-
ally through the tropical–extratropical teleconnection response
(Stan et al. 2017). The onset of tropical heavy rainfall is criti-
cally dependent upon the relative saturation of the atmo-
sphere (Bretherton et al. 2004; Neelin et al. 2009), while the
teleconnection response is sensitive to the spatial and temporal
scale of the heating anomaly (Yadav and Straus 2017; Wang
et al. 2020). The MJO is a prominent example of a large-scale
tropical disturbance that is strongly governed by column mois-
ture (Adames and Kim 2016) and is also a major driver of tro-
pical–extratropical teleconnections (e.g., Henderson et al.
2017). With this section, we aim to understand how tropical
rainfall and moisture are coupled and how this coupling affects
MJO simulation in CMIP6 models.

Following Wolding et al. (2020), daily tendencies of precipita-
tion (P) and column saturation fraction (CSF; i.e., vertically
integrated column water vapor divided by vertically integrated
saturation column water vapor) over the Indo-Pacific warm

pool are averaged within conditionally sampled CSF and P bins.
All data are first remapped onto a common 2.58 3 2.58 grid. In
Figs. 5a–c, joint CSF and P (CSF–P for short) tendencies are
shown with vectors, which indicate if CSF–P departures above
or below the mean CSF–P line lead to column moistening or
drying. In observations and in most CMIP6 models, the vectors
rotate clockwise about the mode (red circles in Figs. 5a–f) that
corresponds to the quasi-equilibrium state (Neelin et al. 2008;
Wolding et al. 2020). This clockwise rotation indicates that
anomalously high precipitation for a given CSF is associated
with column moistening, while anomalously low precipitation is
associated with column drying. The strength of this rotation in
each CSF–P bin can be diagnosed using a vorticity-like metric
based on nondimensionalized CSF and P tendencies where
positive values denote clockwise rotation (Fig. 5b). A scalar
rotation metric R is then computed as the frequency-weighted
rotation in CSF–P space.

For models with R . 0, positive moistening and rainfall ten-
dencies are largest during the dry-to-moist transition when P is
much greater than its mean value for a given CSF (solid red line

FIG. 5. (left) Daily mean column saturation fraction (CSF) tendency (dCSF/dt; in % day21; shading) and the daily mean joint CSF rain-
fall-rate tendencies (vectors) as a function of CSF rainfall rate (P) for the Indo-Pacific warm pool (ocean-only grid points in 208S–208N,
308–1808E) from ERA-Interim and (top) TRMM 3B42, (middle) GFDL-CM4 (the median high-performing model), and (bottom)
FGOALS-f3-L (the median low-performing model). Red filled circle is mode of observations; red solid and dashed lines are mean rainfall
rate and CSF, respectively, for a given CSF or rainfall rate bin. (center) Nondimensional rotation (d[dCSF/dt]/dCSF2 d[dP/dt]/dP; shading
with clockwise rotation shaded green; value shown in upper left of each panel) and CSF-P probability distribution function (contours).
(right) Shown are (top) frequency-weighted mean rotation for ERA-Interim–TRMM and CMIP6 models, i.e., the “rotation metric”; (mid-
dle) the lagged regression of TRMM 3B42 tropical precipitation (108S–108N-averaged) anomalies onto the 20–100-day filtered eastern
Indian Ocean area-averaged (58S–58N, 858E–958E) rainfall; and (bottom) scatterplot of individual model convection–moisture rotation
metric against the Jiang et al. (2015) MJO propagation metric (see text for details), where colors of dots match bar colors above. The corre-
lation of the two metrics is r = 0.49.
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in Figs. 5a–c). Analysis of radar data collected over the tropical
Indian Ocean indicate that this state is associated with a transi-
tion from trade wind cumulus to cumulus congestus (Wolding
et al. 2020). Negative moistening and rainfall tendencies are larg-
est when CSF is greater than its average value for a given P (red
dashed line in Figs. 5a–c), a state associated with widespread
stratiform rainfall with embedded convection. For models with
R, 0, higher-than-average rainfall at intermediate CSF is associ-
ated with strong drying; positive P tendencies are only observed
at high CSF. Rainfall–moisture coupling in R , 0 models
suggests that exaggerated depletion of column water vapor by
rainfall leads to excessive drying at intermediate CSF, thus reduc-
ing the likelihood of subsequent heavy precipitation. Heavy
precipitation in these models is only observed at high CSF, where
the environment cannot be rapidly dried by rainfall.

Correlations between the R metric and several MJO propa-
gation “pattern correlation” metrics for a subset of CMIP6
models suggest that tropical rainfall–moisture coupling plays
an important role in regulating MJO periodicity. Various
MJO pattern correlation metrics have been used to assess
MJO propagation in models by correlating simulated and
observed rainfall lagged regressions over the warm pool. Jiang
et al. (2015) computed pattern correlations of regression coef-
ficient using the composite propagation plotted in Fig. 5h (i.e.,
the “full” metric). Wang et al. (2018) and DeMott et al.
(2019) reduced the influence of MJO period on the pattern
correlation by masking coefficients within 6158 longitude of
the rainfall basepoint (the “masked” metric), while Ahn et al.
(2020) completely removed periodicity effects by only consid-
ering positive coefficients in a small portion of the domain
east the Maritime Continent (the “MC-crossing metric”).
Correlations between the R-metric and the full, masked, and
MC-crossing propagation metrics are 0.47, 0.23, and 0.11,
respectively. The correlation is only statistically significant for
the full pattern correlation metric, which measures the
combined effects of MJO propagation and period.

b. Temperature–water vapor environment

The aim of this module is to create metrics that capture the
typical range of moisture and temperature over which precipi-
tation is produced by condensing information from prior diag-
nostics (which also provides information on sensitivity to
sampling and resolution; Kuo et al. 2018, 2020). Here we use a
thermodynamic space in which temperature is measured by the
vertically integrated saturation humidity, qsat, and moisture is
measured by column relative humidity, CRH = CWV/qsat,
where CWV is column water vapor, for each qsat. Figure 6a
shows, for qsat = 65.5 mm over tropical oceans, the conditional
mean precipitation rate (circles) and precipitation contribution
(lines) from observations and one model instance. For observa-
tions, we use precipitation from the TRMM PR, column water
vapor from the TRMM Microwave Imager (TMI), and ERA5
temperature for computing qsat (for an alternative combination
of observations, we use MERRA-2 temperature in Figs. 6c,d).
The PR is coarse-grained to 0.258 3 0.258, compatible with the
CWV resolution; results are insensitive to resolution up to 1.58
(Kuo et al. 2018). The observed precipitation rate sharply picks

up as CRH increases above a certain threshold. The precipita-
tion contribution peaks near this value because the system
spends less time at the high precipitation values and the many
occurrences of low CRH contribute little to precipitation. The
MIROC-E2SL model exhibits qualitatively similar behavior,
although the precipitation pickup is too weak and begins at
lower CRH than observed, as seen more clearly in the peak of
the precipitation contribution. To characterize the moisture
range over which precipitation is produced, we identify the
CRH values associated with the 25th and 75th percentiles of
precipitation contribution for each qsat. These CRH values for
qsat (tropospheric temperature environment) between the 25th
and 75th percentiles of qsat (blue lines) are shown in Fig. 6b,
together with the precipitation contribution as a function of
CRH and qsat (color contours). A notable feature is that the
CRH values associated with the 25th and 75th percentiles as
well as peak of precipitation contribution decrease as qsat
increases (i.e., precipitation is produced at lower CRH in a
warmer environment).

The values associated with these percentiles provide a good
summary of the observed thermodynamic range associated with
precipitation, shown by the blue trapezoid in Fig. 6b. We choose
a visual reference range (gray box) and repeat it in Figs. 6c and
6d. Figure 6c presents typical thermodynamic ranges associated
with precipitation from a subset of CMIP6 historical simulations
and two observational combinations. Deviations of the trape-
zoids from the observed along the qsat axis indicate cold/warm
biases in the simulation, and deviations along the CRH axis indi-
cate that models tend to produce precipitation outside the
observed CRH range. Figure 6d exhibits the thermodynamic
ranges as in Fig. 6c, but for the 17 available CMIP6 models,
ranked by the precipitation contribution error defined as the L2

difference between the observed and model-simulated precipita-
tion contribution (i.e., the mean square of the dotted area in
Fig. 6a), averaged over the four most probable qsat bins. This
scalar metric focuses on relative humidity rather than tempera-
ture bias. It is encouraging to see that some of the models can
produce most of their precipitation in a thermodynamic environ-
ment close to the observed range both by the scalar metric and
rhomboid location. Other models fare poorly by these measures.
Most models capture the decrease in the CRH for the 75th-per-
centile precipitation contribution with increasing temperature,
but only about half capture this feature for the 25th percentile.

5. Phenomena-based metrics

Phenomena-based metrics emphasize weather features such
as synoptic systems and different types of storms that generate
precipitation. While synoptic systems such as fronts may be
broadly resolved by GCMs at typical 18 resolution, storms such
as tropical cyclones, LPS, and MCS require higher-resolution
modeling. Models’ ability to simulate these storms is critical as
they are key contributors to extreme precipitation in many
regions. Feature tracking (briefly summarized in section 2b) is
used to identify and track the weather features, allowing precip-
itation associated with these features be isolated and evaluated
using different metrics that measure model–observation

L EUNG E T A L . 367115 JUNE 2022

Brought to you by UNIVERSITY OF CALIFORNIA LIBRARY Berkeley | Unauthenticated | Downloaded 09/29/22 06:15 PM UTC



differences. Here, four examples of weather features and associ-
ated precipitation are discussed.

a. Low pressure systems

A wide variety of synoptic-scale disturbances that consist of
balanced flow around a pressure minimum produce precipita-
tion in Earth’s tropics and extratropics. Classic examples are
midlatitude baroclinic waves, which often produce intense
precipitation through semigeostrophic uplift in their frontal
zones, and tropical cyclones, which produce precipitation through
the radial, frictionally balanced component of their circulation.
Understanding the mechanisms by which such systems amplify
and generate precipitation requires tracking the systems from
initial genesis; this can be a difficult task, requiring data of suffi-
ciently fine resolution and algorithms of adequate robustness to
unambiguously represent the weak and sometimes horizontally
small low pressure center. Here we illustrate how a strategic

choice of variables allows for improved tracking of low pressure
systems (LPS) in the South Asian monsoon, which produce a
large fraction of that region’s annual mean rainfall as well as
many extreme precipitation events. This tracking exercise allows
the relationship of circulation with precipitation to be character-
ized in observations and model ensembles.

Tropical LPS are most commonly identified and tracked
using lower-tropospheric vorticity or sea level pressure. Even
for strong tropical cyclones, ambiguities in the criteria used in
the tracking algorithm can lead to large uncertainties in the
number of storms identified in observationally constrained
gridded data (e.g., Murakami 2014). This issue is even more
problematic for weak LPS, where the noisiness of the vorticity
field produces irregular, broken tracks for systems that seem
to move smoothly when tracked subjectively using a standard
suite of meteorological data (Fig. 7a). Sea level pressure,
which is less noisy, is sometimes used to track LPS instead but

FIG. 6. (a) Observed (blue; TMI 1 PR1 ERA5; see text) and an example model (magenta) conditional mean precipitation rate (circles)
and precipitation contribution (lines) as a function of column relative humidity (CRH) for column-integrated saturation humidity qsat =
65.5 mm (bin width: 4.5 mm) for tropical oceans within 208S–208N. Note that precipitation contributions here are normalized so the area
under each curve is one. The 25th–75th percentiles of precipitation contributions are indicated by shaded areas, and the mean CRH
weighted by 25%–75% precipitation contribution by diamonds. The precipitation contribution error [in (d)] is defined by considering the L2

difference between the observed and model-simulated precipitation contributions, i.e., the mean square of the dotted area. (b) Color con-
tours indicate precipitation contributions normalized for each qsat. Blue trapezoid is the CRH at the 25th and 75th percentiles of the precipi-
tation contribution between the 25th and 75th percentiles of qsat. The gray box indicates a visual reference range, which remains invariant in
(c) and (d). (c) Trapezoids are as in (b), but from a set of CMIP6 historical simulations; the observed trapezoid from (b) is repeated
(blue) and an additional observational combination (TMI 1 PR 1 MERRA2; see text) shown in purple. (d) Black trapezoids and gray
boxes are as in (c). The white diamonds indicate the 50th-percentile qsat and the mean CRH weighted by the precipitation contribution
within the rhomboid range. The precipitation-contribution error (dark green) is defined as the L2 difference between the observed and
model-simulated precipitation contribution, averaged over the four most probable qsat bins. Here the difference between the two observa-
tional combinations provides a simple measure of observational uncertainty and is used to normalize the precipitation contribution error.
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is ill suited for South Asian LPS, which typically have winds
that peak around 3 km above the surface; geopotential height
near the level of maximum wind also does not capture the
full rotational flow given the low latitude and high Rossby
number of these storms. Physical reasoning, as well as system-
atic assessment of multiple candidate variables with hundreds
of combinations of quantitative tracking criteria, showed that
the streamfunction of the horizontal 850-hPa wind is an opti-
mal variable to use for tracking these LPS (Fig. 7b; Vishnu
et al. 2020). This streamfunction represents the full nondiver-
gent wind, even when geostrophic balance does not hold, yet
retains the smoothness of the geopotential or sea level pres-
sure fields; it was inverted using a method to avoid contamina-
tion by any wind data extrapolated below Earth’s surface
(Vishnu et al. 2020).

Precipitation in South Asian monsoon LPS is known to
fall southwest of the storm center, where the interaction of
the storm’s rotational flow with the background vertical
shear produces quasigeostrophic uplift (Rao and Rajamani
1970; Sanders 1984). This placement of peak precipitation
is well captured when compositing TRMM precipitation
relative to ERA5 LPS tracks (Fig. 7c). ERA5 also accu-
rately represents the well-known distribution of track

density, with storm frequency peaking strongly over the
northwest Bay of Bengal (Fig. 7b). Recent work has shown
that LPS frequency likely peaks in that small region
because the large-scale, low-level monsoon winds are baro-
tropically unstable there (Diaz and Boos 2019) and vapor
pressures are large with strong horizontal gradients
(Ditchek et al. 2016; Adames and Ming 2018). Wind-
enhanced evaporation from the Bay of Bengal may also
enhance LPS intensity there (Murthy and Boos 2020;
Fujinami et al. 2020; Diaz and Boos 2021).

By tracking LPS in ensembles of GCMs, we can create
composites that allow model precipitation bias to be assessed
in a phenomenon-based system rather than in a space- or
time-based system that averages many types of atmospheric
disturbances. One high-resolution GCM (E3SM integrated at
0.258 resolution) represents the track density of South Asian
monsoon LPS well, in addition to the spatial structure of pre-
cipitation relative to the vortex center (Figs. 7b,c). This is
notable given the poor ability of some coarse-resolution
GCMs to simulate these LPS (Praveen et al. 2015). However,
the E3SM model simulates monsoon LPS rainfall that is too
weak, with the peak storm-centered composite precipitation
being about half that observed (Fig. 7c). Other models exhibit

FIG. 7. (a) Example of the influence of variable choice on tracking skill: compared to the 850-hPa relative vorticity,
which is commonly used to track tropical disturbances, a more continuous track that better matches the subjectively ana-
lyzed reference track is obtained using the streamfunction of the 850-hPa horizontal wind (magenta lines show tracks
obtained from an automated algorithm applied to ERA5, while blue lines show the reference track). (b),(c) Comparison
of model (black contours, for E3SM) and observed (shading) representations of (b) climatological mean track density and
(c) vortex-centered composite rain rate for South Asian monsoon low pressure systems. E3SM simulates a reasonable
track density but produces disturbances that rain too little with peak rainfall biased slightly toward the vortex center.
Observed tracks are from ERA5; observed precipitation from TRMM. (d) Metrics showing skill of E3SM and four High-
ResMIP models in simulating the spatial structure of rainfall in South Asian low pressure systems. For vortex-centered
composite rain rates [as in (c)], we show the correlation coefficient, root-mean-square error (in mm day21), and horizontal
mean bias (in mm day21, averaged over a 108 3 108 box around the composite vortex center) compared to TRMM. Note
that E3SM has the highest correlation and the lowest RMSE but a larger magnitude bias in horizontal-mean precipitation
than the MRI models; the MRI model skill degrades at finer resolution (MRI-S is finer resolution than MRI-H), while
CNRMmodel skill has little sensitivity to resolution.
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a variety of biases in their representation of monsoon LPS pre-
cipitation with differing sensitivities to model resolution. Storm-
centered composites in the CNRM models have overly strong
precipitation with little sensitivity to model resolution, while the
MRI models produce roughly the right amount of precipitation
over the entire storm but with a spatial pattern that, unexpect-
edly, degrades at finer model resolution (Fig. 7d). These biases
are large for some models, exceeding 50% of the system-aver-
aged TRMM rain rate of 15 mm day21; interannual variations in
LPS activity and storm-centric rain rates are substantially more
modest (e.g., Sikka 1980; Krishnamurthy and Ajayamohan 2010;
Vishnu et al. 2020).

Such assessment of model skill in representing the synoptic
systems that produce extreme rainfall, such as monsoon LPS,
is an important step in producing reliable projections of future
extreme rainfall. The LPS dataset used here, which is avail-
able for five modern reanalysis products, provides LPS tracks
throughout the global tropics that can be used to better
understand a variety of synoptic-scale phenomena, including
the weak progenitors of tropical cyclones.

b. Mesoscale convective systems

Mesoscale convective systems (MCSs) are ubiquitous over
the tropics year-round and in the midlatitudes during the
warm season. Besides contributing to over 50% of the annual
precipitation in most regions of the tropics and selected
regions in the midlatitudes (Nesbitt et al. 2006; Feng et al.
2021b), MCSs are also key contributors to extreme precipita-
tion, partly because of their larger size and longer lifetime
compared to individual convective storms (Stevenson and
Schumacher 2014). Because of the distinctive nocturnal tim-
ing of MCS, erroneous diurnal timing of summer precipitation
produced by models has been used to infer their failure in
simulating MCSs. Recent efforts in developing algorithms to
identify and track MCSs in observations (Feng et al. 2018)
and model simulations (Feng et al. 2021a) have provided
unprecedented opportunities to directly evaluate MCSs and
their characteristics in weather and climate models using
MCS-specific metrics.

Using FLEXTRKR, an algorithm developed to track MCSs
using both infrared brightness temperature (Tb) and precipi-
tation features (PFs) (Feng et al. 2018, 2019), a global
(608S–608N) MCS tracking database has been developed at
∼10 km and hourly resolution (Feng et al. 2021b). Combin-
ing the track locations and precipitation, this database can
be used to derive information of the MCS number, MCS
precipitation and its fractional contribution to the total pre-
cipitation, MCS maximum precipitation rate, MCS lifetime,
and MCS translation speed and direction. As MCSs are not
well defined at coarser spatial resolution, we develop MCS
metrics mainly for use in evaluating high-resolution weather
and climate simulations with grid spacing , 50 km. Instead
of coarse graining the observations and model outputs,
which correspond to a range of grid spacing, to a common
resolution, we use specific PF criteria derived for a given
resolution for MCS tracking to facilitate comparison across
datasets of different resolutions (Feng et al. 2021a).

Figures 8a and 8b compare the MCS number tracked using
two algorithms, a more commonly used method that tracks
MCSs using Tb only versus FLEXTRKR that tracks MCSs
using both Tb and PF. These two methods produce similar
observed total MCS number and spatial distribution in the
tropics, but larger differences are noticeable in the midlati-
tudes. Including PF in MCS tracking noticeably reduces the
number of MCSs in the midlatitudes by disqualifying large
cold cloud systems (e.g., synoptically forced) with small area
and/or low rainfall intensity PF as MCSs. Using only IR Tb,
the model (E3SM) simulates too many MCSs (blue contours)
except in a few locations. In contrast, using both IR Tb and
PF, E3SM simulates too few MCSs (magenta contours)
except in a few locations. These results show that large cold
cloud systems are produced by the model too frequently but
many of them fail to meet the PF thresholds. This is supported
by the composited MCS rain rates shown in Fig. 8c for north-
east moving MCSs in the central United States during spring
(MAM) and summer (JJA). The simulated and observed rain
rate composites have similar size, but the model produces
much lower peak rain rates. A higher fraction (65%) of MCSs
in the model have a northeast propagation than observed
(44%).

Figure 8d summarizes the MCS precipitation metrics for
four models in HighResMIP. The pattern correlation, root-
mean-square error (RMSE), and bias are calculated based on
comparison of the observed and simulated composited MCS
rain rates over the central United States. Since hourly Tb is
not available from the HighResMIP models except E3SM,
MCSs are tracked using an algorithm that depends only on
PF, trained using MCSs tracked using both Tb and PF (Feng
et al. 2016). Note that E3SM is a free-running fully coupled
simulation with constant 1950 forcing while other simulations
are atmosphere-only simulations driven by observed sea sur-
face temperature and sea ice distribution. The models exhibit
a range of biases from larger negative (E3SM) to larger posi-
tive (NICAM) and the skills are generally lower during sum-
mer than spring. The seasonal difference is particularly large
for NICAM. Unlike the other models that parameterized
deep convection, no deep convection scheme was used in
NICAM at 56-km grid spacing. Last, it is worth noting that
metrics based on composited MCS precipitation can only
reveal differences in PF qualified as MCS. All models evalu-
ated here display significant dry bias in the summer, consistent
with the ubiquitous warm, dry bias noted in CMIP5 (Lin et al.
2017), as the models simulate much lower numbers of MCSs
compared to observations. Therefore, we emphasize the
importance of using multiple metrics for comprehensive eval-
uation of precipitation in models.

c. Frontal precipitation

Fronts have been identified using the method described in
section 2, applied to ERA-Interim and five CMIP6 models,
giving gridded front objects on a 2.58 grid. The fronts are
linked to daily precipitation, using GPCP 1DD as an observa-
tional precipitation estimate. The precipitation data are
regridded to the same resolution as the fronts in order to
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FIG. 8. Influence of variable choice on MCS tracking. MCSs are tracked using (a) only infrared
brightness temperature (IR Tb) and (b) both IR Tb and precipitation feature (PF). The observed
number of MCS is shown in color shading and the model bias is shown in color contours (blue
and magenta) for positive and negative) bias, respectively). (c) Comparison of simulated (black
contours, for E3SM) and observed (colored shading) MCS rain rates (mm h21) composited with a
center collocated with the geometric centroid of the MCS PF. Composites are shown for (left)
spring (MAM) and (right) summer (JJA) for northeast-moving MCSs inside the central United
States (red region) shown in the inset in the left panel. Trained on the MCS statistics tracked using
both IR Tb and PF, the MCSs used in these composites are tracked using only PF to facilitate
comparison with other models for which hourly precipitation but not hourly outgoing longwave
radiation is available. (d) Metrics showing skill of E3SM and three HighResMIP models in simu-
lating the spatial structure of MCS rainfall in the central United States. Based on the rain rate
composites [as shown in (c) for E3SM], three metrics}correlation coefficient, root-mean-square
error (mm h21), and mean bias (mm h21)}are used to evaluate different aspects of the model
MCS rainfall.
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make the linking simpler. We consider precipitation only if it
is above a threshold of 1 mm, which is the minimum 24-h pre-
cipitation a gauge can measure, and this eliminates some of
the “drizzle problem” that models tend to have (Stephens
et al. 2010). The precipitation is associated with a front if it
lies within the front area of influence (which is equivalent to
being in the same grid box or the surrounding eight grid
boxes) during any of the four 6-hourly reanalysis times in the
24-h precipitation period. From this association of fronts and
precipitation, we can produce the diagnostics of frontal (and
nonfrontal) precipitation frequency (Ff, Fnf), frontal (and non-
frontal) precipitation intensity (If, Inf), frontal amplification
factor (Af = If/Inf), and fraction of total precipitation from
fronts (Pf) [see Catto and Pfahl (2013) and Catto et al. (2015)
for full details]. Comparing the model diagnostics to the
observational estimates from ERA-Interim and GPCP, we
can produce a number of metrics, including the correlation,
RMSE, and bias of these values.

Since precipitation biases (Ep) in the models depend on the
frequency of fronts, the frequency of precipitation, and the
intensity of the precipitation, we can also decompose the bias
of each model into components associated with these charac-
teristics as follows:

Ep � DFf If ,o 1 Ff ,oDIf 1 DFfDIf 1 DFnfInf,o
1 Fnf,oDInf 1 DFnfDInf,

where subscript o represents the observational estimate, and
D represents the difference between model and observational
estimate. The cross terms (3 and 6) are generally very small
and are not shown.

Maps (Fig. 9a) of the error decomposition for term 1 (con-
tribution from frequency of frontal precipitation) show that
there are large regions of positive bias contribution. Errors
are largely confined to the regions of maximum storm track
activity and in the NH the largest positive bias contributions
can be seen over the Kuroshio, over western Europe and
parts of the North Atlantic, and at the end of the Pacific storm
track into North America. In the SH the largest positive con-
tributions are in a band between 308 and 408S, particularly
around the south coast of Australia. Term 2 errors (contribu-
tion from intensity of frontal precipitation) are generally larg-
est in the same regions and indicate negative contributions to
the total bias, with this being particularly notable over the
North Atlantic region. The maps indicate a compensation of
biases between terms 1 and 2, which is confirmed for each of
the models in Fig. 9b and is consistent with the CMIP5 models
(Catto et al. 2015). In the midlatitudes the contribution to the
total precipitation error from the nonfrontal precipitation
terms is small (Fig. 9b), as expected due to the high frequency
of fronts.

The models all overestimate Af due to larger negative
biases in the nonfrontal precipitation intensity than the nega-
tive biases in frontal precipitation intensity (not shown).
These biases are large compared to the GPCP Af of 1.28 in
NH DJF and 1.35 in SH JJA and are strongly correlated with
the model biases in the intensity of the frontal precipitation
(not shown). The spatial correlation is between 0.4 and 0.6 in

the NH and between 0.3 and 0.4 in the SH, indicating a better
representation in the NH.

The proportion of total precipitation associated with fronts
in the winter seasons is 0.50 in the NH and 0.54 in the SH for
GPCP and ERA-Interim. The biases in this quantity range
between 0.02 and 0.27 (Fig. 9d), with most models showing a
better representation in the SH. The models that perform bet-
ter for the proportion do not necessarily show better perfor-
mance in the Af metric, indicating the utility of looking at
more than one metric.

Analyzing the ranks of the models using the various calcu-
lated metrics, we can see that some models that perform well
in metrics that quantify magnitude differences (e.g., the
decomposition terms and biases) also perform poorly in their
spatial correlation, (e.g., IPSL-CM6A-LR). Again, this points
to the importance of considering a number of different met-
rics to investigate the model performance.

d. Atmospheric rivers

Atmospheric rivers (ARs) are long narrow bands of poleward
vapor transport often associated with the warm sector in advance
of midlatitude cyclone cold fronts (Ralph et al. 2018). They
account for a large fraction of wet-season precipitation in a num-
ber of regions (Dettinger 2011; Rutz et al. 2014; Guan and
Waliser 2015), and they account for a majority of the poleward
moisture transport (Gimeno et al. 2014). Previous studies exam-
ining ARs in climate model simulations have assessed the ability
of models to adequately simulate relevant characteristics of ARs,
including global and landfalling frequency, intensity, precipita-
tion, duration, life cycle, and so on (Dettinger 2011; Payne and
Magnusdottir 2015; Shields and Kiehl 2016; Goldenson et al.
2018). In this module, we present two metrics aimed at answering
the following questions: 1) Do models simulate AR-related
precipitation in the correct locations? 2) Do models simulate
enough contrast between regions with high AR precipitation and
low AR precipitation? 3) Does the diversity of AR detection and
tracking (ARDTs) affect the above conclusions?

We utilize output from six global ARDTs that participated in
the ARTMIP Tier 1 experiment and Tier 2 CMIP5/-6 experi-
ment (see section 2b); these ARDTs identified ARs in
MERRA-2 and in historical simulations from nine members of
the CMIP5 and CMIP6 multimodel ensembles. We quantita-
tively define “AR-precipitation” for each ARDT as precipita-
tion occurring when AR conditions are identified by a given
ARDT. We calculate AR-precipitation for MERRA-2 (using
the precipitation field fromMERRA-2) and for the CMIP5 and
CMIP6 simulations. We calculate 30-yr averages of these quan-
tities and regrid all to a common 28 3 28 grid to facilitate direct
comparison of the fields between the simulations and the rean-
alysis. Additionally, we calculate AR-precipitation for ERA
20C (1900–2010) to provide a combined estimate of observa-
tional uncertainty and natural variability (since we use a differ-
ent time period than with MERRA-2). Figures 10a and 10b
show the bias in AR-precipitation between two CMIP6 models,
with one model’s bias field indicating some regional biases in
AR-precipitation (Fig. 10a) and another model’s bias field indi-
cating systematically too little AR-precipitation (Fig. 10b).
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FIG. 9. Representation of frontal precipitation in five CMIP6 models (1980–2014) compared to ERA-
Interim fronts with GPCP daily precipitation (1997–2017) for winter (DJF in the NH and JJA in the SH).
(a) Multimodel mean of the first and second terms of the decomposition in mm day21. (b) Area-averaged
decomposition terms (terms 1, 2, 4, and 5) for each of the models in the NH and SH extratropics (158–908).
(c) The (left) correlation, (center) RMSE, and (right) bias for the frontal amplification factor Af = Pf/Pnf. For
each model the left bar is the NH extratropics in DJF and the right bar is the SH extratropics in JJA. (d) The
(left) correlation, (center) RMSE, and (right) bias for the proportion of precipitation associated with fronts.
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The spatial correlation coefficient of AR-precipitation
between each model simulation and MERRA-2 is used to
answer question 1 above, and the ratio of the spatial stan-
dard deviation of AR-precipitation between each model and
MERRA-2 is used to assess question 2. These quantities are
calculated for all available model–ARDT pairs in order to
assess question 3. Figure 10c shows a Taylor diagram con-
structed by plotting the spatial correlations on the azimuthal
axis and the ratio of the standard deviations on the radial axis.

It appears that models generally produce AR-precipitation in
the correct regions, but they do not have enough spatial vari-
ability in AR-precipitation. The models have relatively high
spatial correlation coefficients (regardless of which ARDT is
used), with most models having coefficients between 0.8 and

0.95. It is notable, however, that the value of the spatial correla-
tion coefficient can depend strongly on which ARDT is used.
Consider results from the CMIP5 CCSM4 simulation (navy
blue markers), which range from about 0.7 when evaluated
with the GuanWaliser v2 ARDT to over 0.9 with the
ARCONNECT v2, Lora v2, and TECA BARD v1.0 ARDTs.
In contrast to the spatial correlation, all models have less vari-
ability than the MERRA-2 simulation, and models exhibit a
wide range of skill in this metric.

Across the ARDTs used, some models form distinct clusters
in the Taylor diagram, with the CMIP6 MRI-ESM2-0 and
CMIP5 CCSM4 simulations having systematically low Taylor
skill values and the CMIP5 CanESM2 simulation having
systematically high Taylor skill values. These distinct clusters

FIG. 10. AR precipitation metrics considering AR detection diversity. Bias in mean annual precipitation (mm
day21) associated with ARs detected using the TECA BARD v1.0 ARDT for (a) the CMIP6 historical simulation
from the IPSL-CM6A-LR model (1950–86) and MERRA-2 (1980–2016) and (b) the CMIP6 historical simulation
from the MRI-ESM2–0 model (1950–86) and MERRA-2 (1980–2016). (c) A Taylor diagram comparing the spatial
correlations and spatial standard deviations of AR-precipitation between simulations and MERRA-2, using multiple
ARDTs. Colors are associated with models, and markers are associated with ARDTs. The dashed gray curves in
(c) show contours of constant Taylor skill metric.
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indicate consensus among the ARDTs about the model skill. In
contrast, some models span the Taylor diagram; for example, the
skill of the CMIP5 IPSL-CM5A-LR simulation depends strongly
on which ARDT is used, with the TECA-BARD v1.0 giving a
Taylor skill score of approximately 0.87 and ARCONNECT
v2 giving a skill score of only about 0.32. Comparing between
generations, the CMIP6-CM6A-LR simulation has systematically
higher Taylor skill scores than either of the CMIP5 IPSL simula-
tions. Further, the CMIP6-CM6A-LR simulation forms a distinct
cluster in the Taylor diagram, suggesting a consensus among
ARDTs that the CMIP6 version of the IPSL model is superior to
the CMIP5 versions.

The ARDTs exhibit distinctive differences in model evalua-
tion. Metrics calculated with the TECA-BARD v1.0 ARDT
(star markers in Fig. 10c) are systematically higher than any other
ARDT, and most models evaluated by TECA-BARD v1.0
appear skillful at simulating AR-precipitation. The notable
exceptions are the CMIP6 MRI-ESM2-0 and CMIP5 CCSM4
simulations, which}as noted previously}have low metric scores
no matter which ARDT is used, which is due to a systematic low
bias in AR-precipitation in the simulations (e.g., Fig. 10b). Other
ARDTs, such as ARCONNECT v2, have a wide spread in the
AR-precipitation metrics.

These differences among ARDTs are partly related to their
designs. ARCONNECT v2 utilizes an absolute threshold in
IVT when identifying ARs, which would make the ARDT
much more sensitive to biases in model humidity and/or winds.
If a simulation has a systematic low bias in IVT, for example,
then the ARCONNECT v2 ARDT will detect systematically
fewer ARs in that simulation. Other ARDTs, such as Lora v2
and TECA-BARD v1.0, utilize relative IVT thresholds, which
may be less sensitive to model bias.

6. Discussion and summary

With a primary goal of introducing a suite of exploratory pre-
cipitation metrics and demonstrating their use in evaluating pre-
cipitation in climate models, we minimized the hurdle by
allowing different groups to apply their diagnostics and metrics
to readily available model outputs using their preferred or read-
ily available benchmark datasets. Although most of the metrics
were applied to CMIP6 simulations including HighResMIP, the
number of models evaluated ranges between 4 and 35. Because
feature tracking generally requires more variables and higher
temporal frequency data, the LPS, MCS, FRT, and AR metrics
were demonstrated using only 4–9 simulations. Although all
other metrics were applied to a much larger number of CMIP6
simulations (17–35), differences in the specific simulations used
and whether a single or multiple members of a model family
were used make comparison across models and metrics
difficult.

Despite the difficulty in drawing broad conclusions, some
general observations can be made for each metric and by
comparing across models and metrics. For precipitation diurnal
cycle, models generally perform much better over ocean than
over land, as models have a tendency to produce peak precipi-
tation in the afternoon over land while the observed peak
precipitation occurs in the late afternoon/early evening. There

is a relatively strong negative intermodel correlation between
biases in the diurnal amplitude and phase over ocean but such
correlation is positive and weaker over land. Almost all the
examined models fail to capture the nocturnal peak observed at
the ARM SGP site. For precipitation and dry spells, models
perform well in simulating the spatial pattern of both daily
precipitation and duration of dry-spell cutoff scales, which
means that models would also do well in simulating the spatial
distribution of extremes. However, there is a larger spread in
terms of scaling factor (i.e., the overall magnitude of the
patterns), with the daily precipitation cutoff scale closer to
observations than the dry spell duration cutoff scale. Pattern
correlation and scaling factor are largely independent metrics
as their intermodel correlations are relatively low. In contrast
with the precipitation diurnal cycle, spectral analysis shows
that models perform better over land than ocean (between
308S and 308N) and better over the NH midlatitudes
(308–608N) than the tropics (158S–158N). The majority of the
models analyzed have their spectra overlapping with observa-
tions by more than 60% in all of the regions and seasons, but
the metrics from the models nearly all lie outside the spread of
the observation datasets used. The temporal and spatial coher-
ence analysis highlights that the CMIP6 models generally
produce precipitation features that are too large and that last
too long, particularly in the tropical oceans. Despite these gen-
eral tendencies, models have a wide range of abilities, with
some producing good spatial and temporal variability while
others perform poorly at both. There are stronger negative
biases over land than over ocean, indicating that models show
little spatial variability in temporal coherence over land and
hence cannot distinguish regions dominated by longer-lived
rain-bearing systems from regions dominated by shorter-lived
systems. In the tropical Indian Ocean there are some relation-
ships between the precipitation coherence and MJO metrics
(Maritime Continent propagation).

For the process-oriented metrics, coupling of rainfall ten-
dencies and CSF tendencies over the Indo-Pacific warm pool
(Fig. 5) is well simulated in 5 of the 20 models analyzed for
that metric, and poorly simulated in 8 models; the remaining
models with neutral skill may either overestimate or underesti-
mate the rainfall-moisture “rotation” metric derived from this
diagnostic. While the rotation metric is modestly correlated
with the MJO pattern correlation metric (r = 0.41), several
models may perform well in one metric, but poorly in another,
indicating that rainfall–moisture coupling alone is not a good
predictor of a model’s ability to simulate the MJO. For the
temperature–water vapor environment, almost half of the
models produce most of their precipitation over tropical
oceans in a temperature–moisture environment that is reason-
ably close to the observed range (using twice the distance
between the two observational estimates as the reference
range). This reflects that the deep-convective parameteriza-
tions in these models have included a substantial dependence
of convective updrafts on lower free-tropospheric humidity
(Kuo et al. 2017). Such a precipitation–temperature–water
vapor relationship, however, is not perfectly aligned with other
metrics related to precipitation and atmospheric moisture, as
will be discussed further below.

L E UNG E T A L . 367915 JUNE 2022

Brought to you by UNIVERSITY OF CALIFORNIA LIBRARY Berkeley | Unauthenticated | Downloaded 09/29/22 06:15 PM UTC



In the category of phenomena-based metrics, all HighResMIP
models examined here simulated synoptic-scale vortices (i.e.,
LPS) over South Asia with the qualitatively correct spatial struc-
ture of rainfall, with no improvement in model skill at finer hori-
zontal resolution in the two models for which low- and high-
resolution versions were examined. This contrasts with prior
studies that found LPS were simulated more accurately at finer
resolutions; different result may be due to use of a range of
coarser resolutions than examined here (Praveen et al. 2015) or
the use of only one model (Sabin et al. 2013). In contrast to the
general skill in simulating the spatial structure of precipitation
within LPS, models exhibited a wide range of biases in represent-
ing the amplitude of LPS precipitation, with the three main mod-
els examined showing large negative bias, large positive bias, and
low bias, with the bias magnitude changing little or, unexpect-
edly, even degrading at finer resolution. For MCS metrics, the
four HighResMIP models evaluated show varying skill in repro-
ducing the observed composited MCS rainfall in the central
United States, with model ability to simulate intense convective
precipitation a distinguishing factor. Skill scores are worse in
summer than spring in all models, consistent with the more domi-
nating frontal large-scale environments of MCS in spring, which
are more skillfully simulated by global models (Song et al. 2019).
The precipitation error decomposition into frontal precipitation
frequency and intensity indicates that all the models evaluated
have compensating biases. They produce frontal precipitation
too frequently, with intensity that is too low. This is consistent
with the results from CMIP5 in Catto et al. (2015), although the
CMIP6 models so far seem to have smaller errors. The total
precipitation coming from fronts is well represented in the
models, including the spatial patterns, indicating good repre-
sentation of fronts themselves. For the AR precipitation met-
ric, ERA-20C has a Taylor skill score of 0.96 relative to
MERRA-2 when assessed using the TECA_BARD_ARDT
AR tracking method, which provides a measure of observa-
tional uncertainty in the metric. Considering the inter-ARDT
spread in the Taylor skill score, no models perform well in
simulating AR precipitation as none is within one standard
deviation of ERA 20C score.

As our diagnostic analysis has been summarized succinctly
using scalar metrics, meta-analysis of model skill can be facili-
tated by developing a matrix of skill scores for models versus
metrics to reveal possible relationships among metrics and mod-
els. Comparing across metrics and models, it is clear that model
skill varies substantially. To help reveal potential relationships
among metrics and models, we identified the top-5 and bottom-5
simulations evaluated by each category of metrics (e.g., diurnal
precipitation) and its subcategories (e.g., amplitude and phase of
diurnal precipitation). The results of this relative model ranking
are not shown, as we focus on insights that can be gained from
the comparative analysis rather than highlighting the perfor-
mance of specific models. Consistent with the diverse model skill
exhibited across metrics and models, only two model families are
in the top-5 group for more than three different categories of
metrics and are not in the bottom-5 group in any metrics. Simi-
larly, only one model family is in the bottom-5 group for more
than three categories of metrics and is not in the top-5 group in
any metrics. Many models perform well in some metrics but

poorly in other metrics. There is a general tendency for simula-
tions produced by the same model family but using different res-
olutions, model versions, or model configurations, to perform
similarly, although some exceptions can also be found.

Focusing on the actual model skill for each metric, we also
identified the good and poor performing models in an absolute
sense to determine how well models perform for each metric,
and subsequently ranked the metrics according to those in
which most models performed well or poorly. This absolute
skill and ranking was determined by the developers of each
metric based on their own judgement, which generally
involved comparing model skill relative to some uncertainty
related to observation data, and for ARs, uncertainty in track-
ing methods is also considered. A few metrics that stand out
with more models performing well and poorly are highlighted
here. Notably, more than 50% of the simulations evaluated
based on the diurnal amplitude and phase of precipitation
over ocean are considered skillful, while the same is true for
the evaluation of spectral characteristics over land and the NH
midlatitudes, and for the scaling factor of daily precipitation
and the pattern correlation of the cutoff scale between the sim-
ulated and observed duration of dry spells. In contrast, two
metrics stand out as more challenging for models, with more
than 50% of the simulations considered to be performing
poorly. These are correlation coefficients of the Taylor skill
score for spatial coherence over both land and ocean and the
AR precipitation Taylor skill score. Last, more than 50% of
the simulations are considered neutral (neither skillful nor
poor) with respect to several metrics including diurnal ampli-
tude and phase over land; spectral analysis over ocean, tropics,
and SH midlatitudes; and MJO pattern correlation. For other
metrics, models are more mixed in how well they represent
the specific precipitation characteristics evaluated.

Based on the relative and absolute ranking, additional
insights can be gained with regard to the potential relation-
ships among the metrics by calculating the correlation coeffi-
cients between the model ranking based on different metrics
for the overlapping models, although not all metrics should be
connected (e.g., due to geographical differences). For illustra-
tive purposes, we calculated the correlation coefficients
between the model ranking based on the temperature–water
vapor environment and the model ranking based on other
metrics for the overlapping models. We found relatively
strong correlations (r . 0.5) of model skill in temperature–
water vapor environment with model skill in precipitation cut-
off scale (both pattern correlation and scaling factor), spectral
analysis, temporal and spatial coherence, and MJO propaga-
tion based on the relative ranking. On the other hand, model
skill in temperature–water vapor environment has very low
(r , 0.2) or negative correlations with model skill in diurnal
precipitation over land (both amplitude and phase), diurnal
precipitation over ocean (amplitude only), and dry spell cutoff
scale (pattern correlation). Notably, correlations with the
rotation metric and MJO east/west power ratio metric are
also rather low (,0.3).

The above analysis is suggestive of some predictive power of
the model skill in the temperature–water vapor environment
on the model skill in several other precipitation characteristics.
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This motivates future work to understand these relationships by
performing additional diagnostic analysis, and also to apply the
exploratory metrics more systematically to the same set of model
simulations using comparable benchmark datasets in order to
support quantitative analysis of skill across models and metrics.
This may reveal less obvious relationships among metrics and
models, reflecting relationships among processes and/or weather
phenomena highlighted by the metrics, or relationships among
models due to commonality such as parameterization schemes.
Such information is useful for guiding model development and
model tuning. Machine learning approaches may be used to
develop predictive models of the relationships among the differ-
ent metrics presented here, or between those metrics and others
such as metrics for the modes of climate variability (e.g., MJO,
ENSO), circulation indices (e.g., monsoon), sea surface tempera-
ture pattern, etc. Such mapping of model skill scores across met-
rics may help focus efforts on improving model prediction skill
given the important role of modes of variability in predicting pre-
cipitation at various time scales.

Going beyond baseline metrics that evaluate basic precipita-
tion features, data requirements are an obstacle for systematic
application of the metric suite because high-temporal-frequency
data and certain variables (e.g., outgoing longwave radiation) are
not commonly available from the CMIP data archive. Table 2 is
a good starting point for expansion in the future when more
exploratory metrics are added. Communicating the data require-
ments to community efforts such as CMIP and demonstrating
the usefulness of the exploratory metrics are both important for
increasing awareness of, and advocacy for, the data needs of
model evaluation and diagnostics to support the broad use of cli-
mate model output.

While the metrics described in this study are useful individu-
ally, combining or connecting them may potentially provide
more powerful metrics to benchmark models as well as reveal-
ing the underlying reasons or sources of the model biases. At
the same time, decomposition of the metrics into independent
components is useful for attributing model biases to multiple
factors. Future work to standardize the metrics, addressing
uncertainties in observation data and tracking methods, and
improving interpretations of the metrics, may facilitate more
robust use of the exploratory metrics. There may also be a
need to reconcile features attributed to different phenomena
simultaneously. For example, precipitation from MCSs embed-
ded within frontal systems could potentially be attributed to both
MCS and frontal precipitation (e.g., Dowdy and Catto 2017;
Catto and Dowdy 2021). In regions such as the Bay of Bengal
where LPS and MCS are both prominent, it is not clear if certain
precipitation events could be attributed simultaneously to LPS
and MCS and what implications this may have on metrics built
upon these phenomena. Coding and software aspects may also
require some attention in the future to facilitate implementation
of the exploratory metrics in community packages for broader
adoption and use.

Through this study, we have developed methodologies
and analysis codes to calculate metrics and track weather
phenomena. Applying them to the CMIP6 output and
observation data has generated intermediate quantities
and datasets such as tracks of LPS, MCS, fronts, and AR

and associated precipitation and large-scale environments.
These datasets are useful not only for model evaluation but
also for scientific investigations. For example, datasets
derived from the historical simulations could be combined
with similar datasets for simulations of the future climate to
investigate the response of various precipitation metrics to
radiative forcing. Different metrics may also be combined
to understand the connections between different weather
phenomena and storm types and their connections to the
temperature–water vapor environments and modes of vari-
ability. Among the metrics described in this study, the spec-
tral and coherence metrics have already been included in
ASoP, and some atmospheric river tracking algorithms are
available from Coordinated Model Evaluation Capabilities
(CMEC). Efforts are ongoing to coordinate the develop-
ment and implementation of metrics to be incorporated in
community diagnostic packages to facilitate broader use to
improve quantification and understanding of precipitation
biases in weather and climate models.
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Ahmed, F., Á. F. Adames, and J. D. Neelin, 2020: Deep convective
adjustment of temperature and moisture. J. Atmos. Sci., 77,
2163–2186, https://doi.org/10.1175/JAS-D-19-0227.1.

Ahn, M.-S., and Coauthors, 2017: MJO simulation in CMIP5
climate models: MJO skill metrics and process-oriented diagno-
sis. Climate Dyn., 49, 4023–4045, https://doi.org/10.1007/s00382-
017-3558-4.

}}, D. Kim, D. Kang, J. Lee, K. R. Sperber, P. J. Gleckler, X.
Jiang, H. Yoo-Geun, and H. Kim, 2020: MJO propagation
across the Maritime Continent: Are CMIP6 models better than
CMIP5 models? Geophys. Res. Lett., 47, e2020GL087250,
https://doi.org/10.1029/2020GL087250.

Ashouri, H., K.-L. Hsu, S. Sorooshian, D. K. Braithwaite,
K. R. Knapp, L. D. Cecil, B. R. Nelson, and O. P. Prat,
2015: PERSIANN-CDR: Daily precipitation climate data
record from multisatellite observations for hydrological
and climate studies. Bull. Amer. Meteor. Soc., 96, 69–83,
https://doi.org/10.1175/BAMS-D-13-00068.1.

Berry, G., M. J. Reeder, and C. Jakob, 2011: A global climatology
of atmospheric fronts. Geophys. Res. Lett., 38, L04809,
https://doi.org/10.1029/2010GL046451.

Bretherton, C. S., M. E. Peters, and L. E. Back, 2004: Relation-
ships between water vapor path and precipitation over the
tropical oceans. J. Climate, 17, 1517–1528, https://doi.org/10.
1175/1520-0442(2004)017,1517:RBWVPA.2.0.CO;2.

Caldwell, P. M., and Coauthors, 2019: The DOE E3SM coupled
model version 1: Description and results at high resolution.
J. Adv. Model. Earth Syst., 11, 4095–4146, https://doi.org/10.
1029/2019MS001870.

Catto, J. L., and S. Pfahl, 2013: The importance of fronts for
extreme precipitation. J. Geophys. Res. Atmos., 118, 10791,
https://doi.org/10.1002/jgrd.50852.

}}, C. Jakob, and N. Nicholls, 2015: Can the CMIP5 models
represent winter frontal precipitation? Geophys. Res. Lett.,
42, 8596–8604, https://doi.org/10.1002/2015GL066015.

}}, and A. J. Dowdy, 2021: Understanding compound hazards
from a weather system perspective. Wea. Climate Extremes,
32, 100313, https://doi.org/10.1016/j.wace.2021.100313.

Chang, M., B. Liu, C. Martinez-Villalobos, G. Ren, S. Li, and
T. Zhou, 2020: Changes in extreme precipitation accumula-
tions during the warm season over continental China. J. Cli-
mate, 33, 10 799–10 811, https://doi.org/10.1175/JCLI-D-20-
0616.1.

Chen, D., and A. Dai, 2018: Dependence of estimated precipita-
tion frequency and intensity on data resolution. Climate Dyn.,
50, 3625–3647, https://doi.org/10.1007/s00382-017-3830-7.

}}, and }}, 2019: Precipitation characteristics in the Community
Atmosphere Model and their dependence on model physics
and resolution. J. Adv. Model. Earth Syst., 11, 2352–2374,
https://doi.org/10.1029/2018MS001536.

}}, }} and A. Hall, 2021, Precipitation partitioning and the
“drizzling” bias in CMIP5 models. J. Geophys. Res. Atmos.,
126, e2020JD034198, https://doi.org/10.1029/2020JD034198.

Chen, J., A. Dai, and Y. Zhang, 2020: Linkage between projected
precipitation and atmospheric thermodynamic changes. J.
Climate, 33, 7155–7178, https://doi.org/10.1175/JCLI-D-19-
0785.1.

Covey, C., and P. Gleckler, 2014: Standard diagnostics for the
diurnal cycle of precipitation. Lawrence Livermore National
Laboratory Tech. Rep. LLNL-TR-659685, 11 pp., https://
www.osti.gov/servlets/purl/1165787.

}}, }}, C. Doutriaux, D. N. Williams, A. Dai, J. Fasullo, K.
Trenberth, and A. Berg, 2016: Metrics for the diurnal cycle
of precipitation: Toward routine benchmarks for climate
models. J. Climate, 29, 4461–4471, https://doi.org/10.1175/
JCLI-D-15-0664.1.

Dai, A., 2001: Global precipitation and thunderstorm frequencies.
Part II: Diurnal variations. J. Climate, 14, 1112–1128, https://doi.
org/10.1175/1520-0442(2001)014,1112:GPATFP.2.0.CO;2.

}}, 2006: Precipitation characteristics in eighteen coupled cli-
mate models. J. Climate, 19, 4605–4630, https://doi.org/10.
1175/JCLI3884.1.

}}, F. Giorgi, and K. E. Trenberth, 1999: Observed and model
simulated diurnal cycles of precipitation over the contiguous
United States. J. Geophys. Res., 104, 6377–6402, https://doi.
org/10.1029/98JD02720.

}}, X. Lin, and K.-L. Hsu, 2007: The frequency, intensity, and
diurnal cycle of precipitation in surface and satellite observa-
tions over low- and mid-latitudes. Climate Dyn., 29, 727–744,
https://doi.org/10.1007/s00382-007-0260-y.

Dee, D. P., and Coauthors, 2011: The ERA-Interim reanalysis: Con-
figuration and performance of the data assimilation system.
Quart. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.
1002/qj.828.

DeMott, C. A., N. P. Klingaman, W. L. Tseng, M. A. Burt, Y.
Gao, and D. A. Randall, 2019: The convection connection:
How ocean feedbacks affect tropical mean moisture and
MJO propagation. J. Geophys. Res. Atmos., 124, 11 910–
11931, https://doi.org/10.1029/2019JD031015.

Deser, C., A. Phillips, V. Bourdette, and H. Teng, 2012: Uncer-
tainty in climate change projections: The role of internal vari-
ability. Climate Dyn., 38, 527–546, https://doi.org/10.1007/
s00382-010-0977-x.

Dettinger, M., 2011: Climate change, atmospheric rivers, and
floods in California}A multimodel analysis of storm fre-
quency and magnitude changes. J. Amer. Water Resour.
Assoc., 47, 514–523, https://doi.org/10.1111/j.1752-1688.2011.
00546.x.

Diaz, M., and W. R. Boos, 2019: Monsoon depression amplification
by moist barotropic instability in a vertically sheared

J OURNAL OF CL IMATE VOLUME 353682

Brought to you by UNIVERSITY OF CALIFORNIA LIBRARY Berkeley | Unauthenticated | Downloaded 09/29/22 06:15 PM UTC

https://doi.org/10.1175/JAS-D-15-0170.1
https://doi.org/10.1175/JAS-D-15-0170.1
https://doi.org/10.1175/JAS-D-17-0310.1
https://doi.org/10.1175/JAS-D-19-0227.1
https://doi.org/10.1007/s00382-017-3558-4
https://doi.org/10.1007/s00382-017-3558-4
https://doi.org/10.1029/2020GL087250
https://doi.org/10.1175/BAMS-D-13-00068.1
https://doi.org/10.1029/2010GL046451
https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2
https://doi.org/10.1175/1520-0442(2004)017<1517:RBWVPA>2.0.CO;2
https://doi.org/10.1029/2019MS001870
https://doi.org/10.1029/2019MS001870
https://doi.org/10.1002/jgrd.50852
https://doi.org/10.1002/2015GL066015
https://doi.org/10.1016/j.wace.2021.100313
https://doi.org/10.1175/JCLI-D-20-0616.1
https://doi.org/10.1175/JCLI-D-20-0616.1
https://doi.org/10.1007/s00382-017-3830-7
https://doi.org/10.1029/2018MS001536
https://doi.org/10.1029/2020JD034198
https://doi.org/10.1175/JCLI-D-19-0785.1
https://doi.org/10.1175/JCLI-D-19-0785.1
https://www.osti.gov/servlets/purl/1165787
https://www.osti.gov/servlets/purl/1165787
https://doi.org/10.1175/JCLI-D-15-0664.1
https://doi.org/10.1175/JCLI-D-15-0664.1
https://doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2
https://doi.org/10.1175/1520-0442(2001)014<1112:GPATFP>2.0.CO;2
https://doi.org/10.1175/JCLI3884.1
https://doi.org/10.1175/JCLI3884.1
https://doi.org/10.1029/98JD02720
https://doi.org/10.1029/98JD02720
https://doi.org/10.1007/s00382-007-0260-y
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.828
https://doi.org/10.1029/2019JD031015
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.1007/s00382-010-0977-x
https://doi.org/10.1111/j.1752-1688.2011.00546.x
https://doi.org/10.1111/j.1752-1688.2011.00546.x


environment. Quart. J. Roy. Meteor. Soc., 145, 2666–2684,
https://doi.org/10.1002/qj.3585.

}}, and }}, 2021: The influence of surface heat fluxes on the
growth of idealized monsoon depressions. J. Atmos. Sci., 78,
2013–2027, https://doi.org/10.1175/JAS-D-20-0359.1.

Ditchek, S. D., W. R. Boos, S. J. Camargo, and M. K. Tippett,
2016: A genesis index for monsoon disturbances. J. Climate,
29, 5189–5203, https://doi.org/10.1175/JCLI-D-15-0704.1.

Dowdy, A., and J. L. Catto, 2017: Extreme weather caused by
concurrent cyclone, front and thunderstorm occurrences. Sci.
Rep., 7, 40 359, https://doi.org/10.1038/srep40359.

Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J.
Stouffer, and K. E. Taylor, 2016: Overview of the Coupled
Model Intercomparison Project Phase 6 (CMIP6) experi-
mental design and organization. Geosci. Model Dev., 9,
1937–1958, https://doi.org/10.5194/gmd-9-1937-2016.

}}, and Coauthors, 2020: Earth System Model Evaluation Tool
(ESMValTool) v2.0}An extended set of large-scale diag-
nostics for quasi-operational and comprehensive evaluation
of Earth system models in CMIP. Geosci. Model Dev., 13,
3383–3438, https://doi.org/10.5194/gmd-13-3383-2020.

Feng, Z., L. R. Leung, S. Hagos, R. A. Houze, C. D. Burleyson,
and K. Balaguru, 2016: More frequent intense and long-lived
storms dominate the trend in central U.S. rainfall. Nat.
Commun., 7, 13429, https://doi.org/10.1038/ncomms13429.

}}, }}, R. A. Houze Jr., S. Hagos, J. Hardin, Q. Yang, B. Han,
and J. Fan, 2018: Structure and evolution of mesoscale convec-
tive systems: Sensitivity to cloud microphysics in convection-per-
mitting simulations over the United States. J. Adv. Model. Earth
Syst., 10, 1470–1494, https://doi.org/10.1029/2018MS001305.

}}, R. A. Houze Jr., L. R. Leung, F. Song, J. Hardin, J. Wang,
W. Gustafson Jr., and C. Homeyer, 2019: Spatiotemporal
characteristics and large-scale environment of mesoscale con-
vective systems east of the Rocky Mountains. J. Climate, 32,
7303–7328, https://doi.org/10.1175/JCLI-D-19-0137.1.

}}, F. Song, K. Sakaguchi, and L. R. Leung, 2021a: Evaluation of
mesoscale convective systems in climate simulations: Methodo-
logical development and results from MPAS-CAM over the
United States. J. Climate, 34, 2611–2633, https://doi.org/10.1175/
JCLI-D-20-0136.1.

}}, L. R. Leung, N. Liu, J. Wang, R. A. Houze Jr., J. Li,
J. C. Hardin, and J. Guo, 2021b: A global high-resolution
mesoscale convective system database using satellite-derived
cloud tops, surface precipitation, and tracking. J. Geophys.
Res. Atmos., 126, https://doi.org/10.1029/2020JD034202.

Fujinami, H., H. Hirata, M. Kato, and K. Tsuboki, 2020: Mesoscale
precipitation systems and their role in the rapid development
of a monsoon depression over the Bay of Bengal. Quart. J.
Roy. Meteor. Soc., 146, 267–283, https://doi.org/10.1002/qj.
3672.

Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective
Analysis for Research and Applications, version 2 (MERRA-2).
J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-
16-0758.1.

Gimeno, L., R. Nieto, M. Vázquez, and D. A. Lavers, 2014:
Atmospheric rivers: A mini-review. Front. Earth Sci., 2, 1–6,
https://doi.org/10.3389/feart.2014.00002.

Gleckler, P. J., C. Doutriaux, P. J. Durack, K. E. Taylor, Y. Zhang,
D. N. Williams, E. Mason, and J. Servonnat, 2016: A more
powerful reality test for climate models, Eos, 97, https://doi.
org/10.1029/2016EO051663.

Goldenson, N., L. R. Leung, C. M. Bitz, and E. Blanchard-Wrig-
glesworth, 2018: Influence of atmospheric rivers on mountain

snowpack in the western United States. J. Climate, 31,
9921––9940, https://doi.org/10.1175/JCLI-D-18-0268.1.

Guan, B., and D. E. Waliser, 2015: Detection of atmospheric rivers:
Evaluation and application of an algorithm for global studies.
J. Geophys. Res. Atmos., 120, 12514–12535, https://doi.org/10.
1002/2015JD024257.

}}, }}, and F. M. Ralph, 2018: An intercomparison between
reanalysis and dropsonde observations of the total water
vapor transport in individual atmospheric rivers. J. Hydrome-
teor., 19, 321–337, https://doi.org/10.1175/JHM-D-17-0114.1.

Haarsma, R. J., and Coauthors, 2016: High Resolution Model
Intercomparison Project (HighResMIP v1.0) for CMIP6.
Geosci. Model Dev., 9, 4185–4208, https://doi.org/10.5194/
gmd-9-4185-2016.

Henderson, S. A., E. D. Maloney, and S. W. Son, 2017: Madden–
Julian oscillation Pacific teleconnections: The impact of the
basic state and MJO representation in general circulation
models. J. Climate, 30, 4567–4587, https://doi.org/10.1175/
JCLI-D-16-0789.1.

Hersbach, H., and Coauthors, 2020: The ERA5 global reanalysis.
Quart. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.
1002/qj.3803.

Hewson, T. D., 1998: Objective fronts. Meteor. Appl., 5, 37–65,
https://doi.org/10.1017/S1350482798000553.

Hirota, H., Y. N. Takayabu, M. Watanabe, M. Kimoto, and
M. Chikira, 2014: Role of convective entrainment in spa-
tial distributions of and temporal variations in precipitation
over tropical oceans. J. Climate, 27, 8707–8723, https://doi.org/
10.1175/JCLI-D-13-00701.1.

Hoffmann, L., and Coauthors, 2019: From ERA-Interim to
ERA5: The considerable impact of ECMWF’s next-genera-
tion reanalysis on Lagrangian transport simulations. Atmos.
Chem. Phys., 19, 3097–3124, https://doi.org/10.5194/acp-19-
3097-2019.

Huffman, G. J., and Coauthors, 2007: The TRMM Multisatellite
Precipitation Analysis (TMPA): Quasi-global, multiyear,
combined-sensor precipitation estimates at fine scales. J.
Hydrometeor., 8, 38–55, https://doi.org/10.1175/JHM560.1.

}}, R. F. Adler, A. Behrangi, D. T. Bolvin, E. Nelkin, and
Y. Song, 2020: Algorithm Theoretical Basis Document
(ATBD) for Global Precipitation Climatology Project
version 3.1 precipitation data, 32 pp., https://docserver.
gesdisc.eosdis.nasa.gov/public/project/MEaSUREs/GPCP/
GPCP_ATBD_V3.1.pdf.

Hwang, Y.-T., and D. M. W. Frierson, 2013: Link between the
double-intertropical convergence zone problem and cloud
biases over the Southern Ocean. Proc. Natl. Acad. Sci. USA,
110, 4935–4940, https://doi.org/10.1073/pnas.1213302110.

Janowiak, J., B. Joyce, and P. Xie, 2017: NCEP/CPC L3 half
hourly 4 km global (608S–608N) merged IR V1, accessed
1 March 2021, https://doi.org/10.5067/P4HZB9N27EKU.

Jiang, X., and Coauthors, 2015: Vertical structure and physical
processes of the Madden–Julian oscillation: Exploring key
model physics in climate simulations. J. Geophys. Res.
Atmos., 120, 4718–4748, https://doi.org/10.1002/2014JD022375.

Joyce, R. J., and P. Xie, 2011: Kalman filter–based CMORPH. J.
Hydrometeor., 12, 1547–1563, https://doi.org/10.1175/JHM-D-
11-022.1.

Klingaman, N. P., G. M. Martin, and A. F. Moise, 2017: ASoP
(v1.0): A set of methods for analyzing scales of precipitation
in general circulation models. Geosci. Model Dev., 10, 57–83,
https://doi.org/10.5194/gmd-10-57-2017.

L E UNG E T A L . 368315 JUNE 2022

Brought to you by UNIVERSITY OF CALIFORNIA LIBRARY Berkeley | Unauthenticated | Downloaded 09/29/22 06:15 PM UTC

https://doi.org/10.1002/qj.3585
https://doi.org/10.1175/JAS-D-20-0359.1
https://doi.org/10.1175/JCLI-D-15-0704.1
https://doi.org/10.1038/srep40359
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-13-3383-2020
https://doi.org/10.1038/ncomms13429
https://doi.org/10.1029/2018MS001305
https://doi.org/10.1175/JCLI-D-19-0137.1
https://doi.org/10.1175/JCLI-D-20-0136.1
https://doi.org/10.1175/JCLI-D-20-0136.1
https://doi.org/10.1029/2020JD034202
https://doi.org/10.1002/qj.3672
https://doi.org/10.1002/qj.3672
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.3389/feart.2014.00002
https://doi.org/10.1029/2016EO051663
https://doi.org/10.1029/2016EO051663
https://doi.org/10.1175/JCLI-D-18-0268.1
https://doi.org/10.1002/2015JD024257
https://doi.org/10.1002/2015JD024257
https://doi.org/10.1175/JHM-D-17-0114.1
https://doi.org/10.5194/gmd-9-4185-2016
https://doi.org/10.5194/gmd-9-4185-2016
https://doi.org/10.1175/JCLI-D-16-0789.1
https://doi.org/10.1175/JCLI-D-16-0789.1
https://doi.org/10.1002/qj.3803
https://doi.org/10.1002/qj.3803
https://doi.org/10.1017/S1350482798000553
https://doi.org/10.1175/JCLI-D-13-00701.1
https://doi.org/10.1175/JCLI-D-13-00701.1
https://doi.org/10.5194/acp-19-3097-2019
https://doi.org/10.5194/acp-19-3097-2019
https://doi.org/10.1175/JHM560.1
https://docserver.gesdisc.eosdis.nasa.gov/public/project/MEaSUREs/GPCP/GPCP_ATBD_V3.1.pdf
https://docserver.gesdisc.eosdis.nasa.gov/public/project/MEaSUREs/GPCP/GPCP_ATBD_V3.1.pdf
https://docserver.gesdisc.eosdis.nasa.gov/public/project/MEaSUREs/GPCP/GPCP_ATBD_V3.1.pdf
https://doi.org/10.1073/pnas.1213302110
https://doi.org/10.5067/P4HZB9N27EKU
https://doi.org/10.1002/2014JD022375
https://doi.org/10.1175/JHM-D-11-022.1
https://doi.org/10.1175/JHM-D-11-022.1
https://doi.org/10.5194/gmd-10-57-2017


Krishnamurthy, V., and R. S. Ajayamohan, 2010: Composite
structure of monsoon low pressure systems and its relation to
Indian rainfall. J. Climate, 23, 4285–4305, https://doi.org/10.
1175/2010JCLI2953.1.

Kuo, Y.-H., J. D. Neelin, and C. R. Mechoso, 2017: Tropical con-
vective transition statistics and causality in the water vapor–
precipitation relation. J. Atmos. Sci., 74, 915–931, https://doi.
org/10.1175/JAS-D-16-0182.1.

}}, K. A. Schiro, and J. D. Neelin, 2018: Convective transition
statistics over tropical oceans for climate model diagnostics:
Observational baseline. J. Atmos. Sci., 75, 1553–1570, https://
doi.org/10.1175/JAS-D-17-0287.1.

}}, and Coauthors, 2020: Convective transition statistics over
tropical oceans for climate model diagnostics: GCM evalua-
tion. J. Atmos. Sci., 77, 379–403, https://doi.org/10.1175/JAS-
D-19-0132.1.

Lin, J.-L., 2007: The double-ITCZ problem in IPCC AR4 coupled
GCMs: Ocean–atmosphere feedback analysis. J. Climate, 20,
4497–4525, https://doi.org/10.1175/JCLI4272.1.

Lin, Y., W. Dong, M. Zhang, Y. Xie, W. Xue, J. Huang, and
Y. Luo, 2017: Causes of model dry and warm bias over cen-
tral U.S. and impact on climate projections. Nat. Commun.,
8, 881, https://doi.org/10.1038/s41467-017-01040-2.

Ma, H.-Y., S. Xie, J. S. Boyle, S. A. Klein, and Y. Zhang, 2013:
Metrics and diagnostics for precipitation-related processes in
climate model short-range hindcasts. J. Climate, 26, 1516–1534,
https://doi.org/10.1175/JCLI-D-12-00235.1.

Mapes, B., and R. Neale, 2011: Parameterizing convective organi-
zation to escape the entrainment dilemma. J. Adv. Model.
Earth Syst., 3, M06004, https://doi.org/10.1029/2011MS000042.

Martin, G. M., N. P. Klingaman, and A. F. Moise, 2017: Connecting
spatial and temporal scales of tropical precipitation in observa-
tions and the MetUM-GA6. Geosci. Model Dev., 10, 105–126,
https://doi.org/10.5194/gmd-10-105-2017.

Martinez-Villalobos, C., and J. D. Neelin, 2018: Shifts in precipita-
tion accumulation extremes during the warm season over the
United States. Geophys. Res. Lett., 45, 8586–8595, https://doi.
org/10.1029/2018GL078465.

}}, and }}, 2019: Why do precipitation intensities tend to fol-
low gamma distributions? J. Atmos. Sci., 76, 3611–3631,
https://doi.org/10.1175/JAS-D-18-0343.1.

}}, and }}, 2021: Climate models capture key features of
extreme precipitation probabilities across regions. Environ.
Res. Lett., 16, 024017, https://doi.org/10.1088/1748-9326/abd351.

McClenny, E. E., P. A. Ullrich, and R. Grotjahn, 2020: Sensitivity
of atmospheric river vapor transport and precipitation to
uniform sea-surface temperature increases. J. Geophys.
Res. Atmos., 21, e2020JD033421, https://doi.org/10.1029/2020J
D033421.

Mechoso, C. R., and Coauthors, 1995: The seasonal cycle over the
tropical Pacific in coupled ocean–atmosphere general circula-
tion models. Mon. Wea. Rev., 123, 2825–2838, https://doi.org/
10.1175/1520-0493(1995)123,2825:TSCOTT.2.0.CO;2.

Mehran, A., A. AghaKouchak, and T. J. Phillips, 2014: Evaluation
of CMIP5 continental precipitation simulations relative to
satellite-based gauge-adjusted observations. J. Geophys. Res.
Atmos., 119, 1695–1707, https://doi.org/10.1002/2013JD021152.
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